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Abstract

By means of the three-dimensional general solution in displacement functions (weighted harmonic functions) for
piezoelectric materials, the general solution of stress components and electric displacements expressed by the

displacement functions is derived by use of the constitutive relation and the equilibrium equations. Based on this
general solution, a series of problems is solved by the trial-and-error method, including circular plate (or cylinder),
annular plate (or hollow cylinder), cone and hollow cone. These problems are circular plates and cylinders under

uniform radial or axial tension and electric displacements as well as pure bending, simply-supported circular plates
subjected to uniformly distributed loads, rotating disks and circular shafts, cones or hollow cones subjected to
concentrated forces plus charge and concentrated force couple at their apex, etc. Analytical solutions to various
problems are obtained. When the cone apex angle 2a equals p, the solutions for the cases of concentrated forces

plus point charges and torsion reduce to the simple and practical solutions of the half-space problem. # 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

Both class 6 mm crystals and piezoelectric ceramics of similar crystal symmetry belong to transversely
isotropic piezoelectric material. Due to its excellent piezoelectric properties, it has found widespread
applications. Therefore, it is necessary to make theoretical analysis and accurate quantitative
descriptions of electric and stress ®elds inside piezoelectric ceramic components in the working condition
caused by the joint action of mechanical loads and electric ®elds, from the point of view of electro-
mechanical coupling. There is a series of classical problems concerning the body of revolution in the
theory of elasticity as shown in Timoshenko and Goodier (1970) and Love (1994), including circular
plates or cylinders under uniform axial and radial tension (or compression) and pure bending, simply-
supported circular plates subjected to uniformly-distributed loads and uniformly rotating circular shafts
and disks, etc. Love (1994) and LureÂ (1964) reported the solutions of the problem of a cone subjected to
concentrated forces at its apex, while there is little study on the annular plate, the hollow cylinder and
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the hollow cone. As for transversely isotropic materials, Lekhniskii (1981) and Hu (1953) studied the
problem of plate bending and the bending and compression problems of a cone subjected to
concentrated forces at its apex. Chen (1965) studied the bending problem of a hollow cone subjected to
concentrated forces at its apex, in addition to a solid cone problem. Furthermore, Ding et al. (1995)
investigated the compression, bending and torsion problems of a spherically isotropic cone subjected to
concentrated forces and force couples.

In regard to piezoelectric materials, Kogan et al. (1996) gave an analytical solution of in®nite body
with spheroidal inclusion under the joint action of uniform loads, electric displacement, in-plane shear
and o�-plane shear. Lee and Jiang (1996) made an accurate three-dimensional analysis of a simply-
supported rectangular piezoelectric plate by state space approach. Ding et al. (1996b) transformed the
basic equations for the case of a distributed body force and a body electric charge into a series of
volume potential problems. A closed-form fundamental solution for the case of characteristics roots s1 6�
s2 6� s3 6� s1 was obtained by means of integration, which is of simple form. Dunn and Wienecke (1996)
also gave the closed-form fundamental solution for characteristics roots s1 6� s2 6� s3 6� s1 using the
general solution and trial-and-error method. Ding et al. (1997a), by use of a simpler general solution
and the trial-and-error method, gave the fundamental solutions for all cases of characteristic roots �s1 6�
s2 6� s3 6� s1, s1 6� s2� s3, s1� s2� s3� and Green's function for semi-in®nite body and two-phase material.
Sosa and Castro (1994) presented the solutions for the cases of concentrated loads and point charge
applied at the line boundary of a piezoelectric half-plane. Ding et al. (1997b) obtained the solutions for
a piezoelectric wedge subjected to concentrated forces and point charge. Ding et al. (1996a) also gave
the solution of concentrated forces applied at the boundary of a piezoelectric half-plane, which was
derived by the Fourier transform.

In this paper, the equilibrium of two important classes of piezoelectric body of revolutionÐcircular
plate (or cylinder) and cone, is systematically studied and a series of analytical solutions is acquired,
which includes circular plates or cylinders under uniform axial and radial tension plus uniform electric
displacements and pure bending, simply-supported circular plates subjected to uniformly distributed
loads, rotating disks and circular shafts, as well as cones or hollow cones subjected to concentrated
forces plus point charge and concentrated force couple at their apex, etc. When the apex angle of the
cone 2a is p, the solutions for concentrated forces plus point charge and torsion are able to reduce to
the solutions of the half-space problem, which are simple in form and easy to verify and utilize. In the
following process of solution, as for the circular plate and cylinder problems, the solutions for the
annular plate and the hollow cylinder are ®rst deduced, then these solutions are reduced to the solutions
for a solid circular plate and a cylinder. With respect to the cone and hollow cone problems, the cone
problem is studied ®rst, then the method will be extended to the hollow cone problem.

2. General solution to the problem of the piezoelectric body of revolution

As suggested by Sosa and Castro (1993), the governing equations for the theory of piezoelectricity
are:

sij, j � ÿFi � r
@2ui
@ t2

Dj, j � rf

sij � Cijkl�ekl ÿ ekijEk
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Di � eikl�ekl � eikEk

�eij � 1

2
�ui,j � uj,i �

Ei � ÿF,i �1�

where sij, �eij, ui, Ei and Di are the components of stress, strain, displacement, electric ®eld and electric
displacement, respectively; F is the electrical potential; r, Fi, rf are material density, body force and
density of free charges, respectively; and cijkl, ekij and eij are the elastic sti�ness, piezoelectric and
dielectric constants, respectively. In the most general case of anisotropy, there are altogether 45
independent constants. The present study is concerned, in particular, with the transversely isotropic
piezoelectric materials as they represent what is possibly the most technologically important piezoelectric
material. Thus, only 10 independent material constants are present. Removing the inertia terms in the
dynamic equations in eqn (1), we get the corresponding equilibrium equations.

Ding et al. (1996a) gave the general solution in terms of four displacement functions for the dynamic
equations for transversely isotropic piezoelectric media. For the equilibrium equations and in the case of
characteristic roots s1 6� s2 6� s3 6� s1, the solution takes the following form in cylindrical coordinates

ur �
X3
i�1

@ci

@r
ÿ 1

r

@c0

@y
, w �

X3
i�1

sik1i
@ci

@zi

uy �
X3
i�1

1

r

@ci

@y
� @c0

@r
, F �

X3
i�1

sik2i
@ci

@zi
�2�

where zi� siz �i � 0, 1, 2, 3� and s0�
��������������
c66=c44
p

, si �i � 1, 2, 3� are the three characteristic roots of a sixth-
degree equation de®ned in Ding et al. (1996) and satisfy Re �si � > 0, k1i and k2i are constants dependent
on materials constants and characteristic roots and the displacement functions ci satisfy the following
equation 

@ 2

@r2
� @

r@r
� @2

r2@y2
� @2

@z2i

!
ci � 0, �i � 0, 1, 2, 3� �3�

Using the constitutive relation and eqn (2), the general solution of stresses and electric displacements
expressed by four displacement functions are obtained. At this point, the coe�cients in front of the
derivatives of the displacement functions with respect to coordinates are all products or linear
combinations of material constants and characteristic roots. If expressions of the stresses and electric
displacements are substituted into the equilibrium and Gauss equations in the absence of Fi and rf,
some relations among these coe�cients will be determined with consideration of eqn (3). With these
relations being taken into account, the general solutions of stress components and electric displacements
can be written as follows:

sr � 2c66
X3
i�1

@2ci

@r2
�
X3
i�1

mi
@2ci

@z2i
ÿ 2c66

@

@r

�
@c0

r@y

�
�4�

or
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sr � ÿ2c66
X3
i�1

�
@

r@r
� @2

r2@y2

�
ci �

X3
i�1

ni
@2ci

@z2i
ÿ 2c66

@

@r

�
@c0

r@y

�

sy � 2c66
X3
i�1

�
@

r@r
� @ 2

r2@y2

�
ci �

X3
i�1

mi
@2ci

@z2i
� 2c66

@

@r

�
@c0

r@y

�

sz �
X3
i�1

ai
@ 2ci

@z2i
, Dz �

X3
i�1

ci
@2ci

@z2i

tyz �
X3
i�1

siai
@2ci

r@y@zi
� s0c44

@2c0

@r@z0

Dy �
X3
i�1

sici
@2ci

r@y@zi
� s0e15

@2c0

@r@z0

tzr �
X3
i�1

siai
@2ci

@r@zi
ÿ s0c44

@2c0

r@y@z0

Dr �
X3
i�1

sici
@2ci

@r@zi
ÿ s0e15

@2c0

r@y@z0

try � 2c66
X3
i�1

@

@r

�
@ci

r@y

�
� c66

 
2
@ 2

@r2
� @2

@z20

!
c0

where

ai � s2i �c33k1i � e33k2i � ÿ c33, ni � ÿais2i

ci � e15�1� k1i � ÿ e11k2i, mi � ni � 2c66 �i � 1, 2, 3� �5�

In regard to axisymmetric problems, let c0 and ci �i � 1, 2, 3� in eqns (3)±(5) be independent of y.
In the later sections, various equilibrium problems are studied by use of harmonic polynomials and

harmonic functions presented in Appendix A. In Sections 3±7, axisymmetric deformation problems are
studied, hence, c0 is taken to be zero. Let the z-axis be the symmetric axis and origin O be in the
middle plane of the plate and cylinder.

Because displacement functions cj satisfy weighted harmonic eqn (3), all harmonic functions in
Appendix A can be chosen as displacement functions simply by replacing z with zi just as illustrated in
the following sections. There are so many symbols in this paper that a Nomenclature is introduced in
Appendix D for convenient reference.
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3. Rigid body displacements and identical electric potential

Using j1 (r, z ) in eqn (A2) in Appendix A, we constitute the displacement function

ci � A1ij1�r, zi � � A1izi �6�
where A1i �i � 1, 2, 3� are unknown constants to be determined.

Substituting eqn (6) into eqns (2) and (4) gives

ur � 0, w �
X3
i�1

sik1iA1i, F �
X3
i�1

sik2iA1i �7�

sr � sy � sz � trz � 0, Dr � Dz � 0 �8�
The above equations contain two physically sensible solutions. One is that a piezoelectric body of
revolution may have rigid body displacement w0, that is,

ur � 0, w � w0, F � 0, sr � sy � sz � trz � 0, Dr � Dz � 0 �9�
The other is that a piezoelectric body of revolution may have identical potential F0, i.e.

ur � w � 0, F � F0, sr � sy � sz � trz � 0, Dr � Dz � 0 �10�

4. Uniform axial tension, radial compression and axial electrical displacement

Using j2�r, z� in eqn (A2) and g0�r, z� in eqn (A5) in Appendix A, we constitute the displacement
function

ci � A2ij2�r, zi � � B0g0�r, zi � � A2i

�
z2i ÿ

r2

2

�
� B0 ln

r

r1
�11�

where A2i �i � 1, 2, 3� and B0 are unknown constants to be determined.
Substituting eqn (11) into eqns (2) and (4) results in

ur � ÿ
X3
i�1

A2ir� B0
1

r
, w � 2

X3
i�1

sik1iA2izi, F � 2
X3
i�1

sik2iA2izi �12�

sr � 2
X3
i�1

eiA2i ÿ 2c66B0
1

r2
, sy � 2

X3
i�1

eiA2i � 2c66B0
1

r2

sz � 2
X3
i�1

aiA2i, trz � 0, Dr � 0, Dz � 2
X3
i�1

ciA2i �13�

where

ei � mi ÿ c66 �14�
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Eqns (12) and (13) contain three physically sensible solutions, that is, solutions for an annular plate or a
hollow cylinder subjected to uniform axial tension and radial compression and uniform axial electric
displacement. The boundary conditions are

r � rk:

8>>><>>>:
sr � qk

trz � 0 �k � 0, 1�, z �2
h

2
:

Dr � 0

8<: sz � p
trz � 0
Dz � d2

�15�

Substituting eqn (13) into eqn (15) leads to

2r20

X3
i�1

eiA2i ÿ 2c66B0 � r20q0, 2r21

X3
i�1

eiA2i ÿ 2c66B0 � r21q1, 2
X3
i�1

aiA2i � p, 2
X3
i�1

ciA2i � d2 �16�

4.1. Uniform radial compression

When p = 0 and d2 = 0, eqn (16) gives the following solution

A21 � D11

d1
, A22 � D12

d1
, A23 � D13

d1
, B0 � l1 �17�

where

d1 � e1�a2c3 ÿ a3c2� � e2�a3c1 ÿ a1c3� � e3�a1c2 ÿ a2c1�

D11 � l2�a2c3 ÿ a3c2�, D12 � l2�a3c1 ÿ a1c3�, D13 � l2�a1c2 ÿ a2c1�

l1 �
r20r

2
1�q1 ÿ q0�

2c66
ÿ
r21 ÿ r20

� , l2 � r21q1 ÿ r20q0

2
ÿ
r21 ÿ r20

� �18�

The solutions for an annular plate or a hollow cylinder under uniform radial compression can be
obtained by substituting eqn (17) into eqns (12) and (13), in which stress components and electric
displacements are

sr � r21q1 ÿ r20q0

r21 ÿ r20
� �q0 ÿ q1�r20r21

r21 ÿ r20

1

r2

sy � r21q1 ÿ r20q0

r21 ÿ r20
ÿ �q0 ÿ q1�r20r21

r21 ÿ r20

1

r2

sz � trz � 0, Dr � Dz � 0 �19�

Putting r0 � 0 in eqns (18) and (19) gives the solutions for circular plate and cylinder.
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4.2. Uniform axial tension

When q1 � q1 � 0 and d2 � 0, from eqn (16) we have

A21 � D21

d2
, A22 � D22

d2
, A23 � D23

d2
, B0 � 0 �20�

where

d2 � a1�e2c3 ÿ e3c2� � a2�e3c1 ÿ e1c3� � a3�e1c2 ÿ e2c1�

D21 � p�e2c3 ÿ e3c2�
2

, D22 � p�e3c1 ÿ e1c3�
2

, D23 � p�e1c2 ÿ e2c1�
2

�21�

Substituting eqn (20) into eqns (12) and (13) gives the solution for a circular plate or a cylinder under
uniform axial tension and compression, in which stress components and electric displacements are

sz � p, sr � sy � trz � 0

Dr � Dz � 0 �22�

4.3. Uniform axial electric displacement

When q0 � q1 � 0 and p = 0, solving eqn (16) leads to

A21 � D31

d3
, A22 � D32

d3
, A23 � D33

d3
, B0 � 0 �23�

where

d1 � c1�a2e3 ÿ a3e2� � c2�a3e1 ÿ a1e3 � � c3�a1e2 ÿ a2e1 �

D11 � d2�a2e3 ÿ a3e2�
2

, D12 � d2�a3e1 ÿ a1e3 �
2

, D13 � d2�a1e2 ÿ a2e1�
2

�24�

The solutions for a circular plate or a cylinder under uniform axial electric displacement can be obtained
by substituting eqn (23) into eqns (12) and (13), in which stresses and electric displacements are

sr � sy � sz � trz � 0

Dr � 0, Dz � d2 �25�

Eqns (19), (22) and (25) show solutions of stresses and electric displacement are independent of material
constants (elastic constants, piezoelectric constants and dielectric constants). Furthermore, eqns (22) and
(25) even show that the solutions are independent of geometric dimensions and shape.
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5. Pure bending and uniform radial electric displacement

Using j3�r, z� in eqn (A2) and g1�r, z� in eqn (A5) in Appendix A, we constitute the displacement
function

ci � A3ij3�r, zi � � B1ig1�r, zi � � A3i

�
z3i ÿ

3r2zi
2

�
� B1izi ln

r

r1
�26�

where A3i and B1i (i = 1, 2, 3) are unknown constants to be determined.
Substituting eqn (26) into eqns (2) and (4) gives

ur � ÿ3
X3
i�1

A3irzi �
X3
i�1

B1i
zi
r

w � 3
X3
i�1

sik1iA3i

�
z2i ÿ

1

2
r2
�
�
X3
i�1

sik1iB1i ln
r

r1

F � 3
X3
i�1

sik2iA3i

�
z2i ÿ

1

2
r2
�
�
X3
i�1

sik2iB1i ln
r

r1
�27�

sr � 6
X3
i�1

eiA3izi ÿ 2c66
X3
i�1

B1i
zi
r2

sy � 6
X3
i�1

eiA3izi � 2c66
X3
i�1

B1i
zi
r2

sz � 6
X3
i�1

aiA3izi, trz � ÿ3
X3
i�1

siaiA3ir�
X3
i�1

siaiB1i
1

r

Dr � ÿ3
X3
i�1

siciA3ir�
X3
i�1

siciB1i
1

r
, Dz � 6

X3
i�1

ciA3izi �28�

The above equations contain two physically sensible solutions, that is, the solution for an annular plate
or a hollow cylinder under pure bending or uniform radial electric displacement, as described below.

5.1. Pure bending

Boundary conditions are
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r � rk:

8>>>><>>>>:
trz � 0�h=2
ÿh=2

zsr dz �Mk �k � 0,1�, z �2
h

2
:

Dr � 0

8<: trz � 0
sz � 0
Dz � 0

�29�

Substituting eqn (28) into eqn (29) gives

X3
i�1

siaiA3i � 0 �30�

X3
i�1

siaiB1i � 0 �31�

X3
i�1

siciA3i � 0 �32�

X3
i�1

siciB1i � 0 �33�

3r20

X3
i�1

sieiA3i ÿ c66
X3
i�1

siB1i � 6r20M0

h3
�34�

3r21

X3
i�1

sieiA3i ÿ c66
X3
i�1

siB1i � 6r21M0

h3
�35�

From eqns (34) and (35), we have

X3
i�1

sieiB3i � k1 �36�

X3
i�1

siB1i � k2 �37�

where

k1 � 2
ÿ
r20M0 ÿ r21M1

�
h3
ÿ
r20 ÿ r21

� , k2 � 6r20r
2
1�M1 ÿM0�

c66h3
ÿ
r21 ÿ r20

� �38�

The unknown constants A3i can be calculated from eqns (30), (32) and (36) and B1i from eqns (31), (33)
and (37).
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A31 � s2s3k1�a2c3 ÿ a3c2 �
D1

, A32 � s3s1k1�a3c1 ÿ a1c3�
D1

, A33 � s1s2k1�a1c2 ÿ a2c1�
D1

D1 � s1s2s3
�
e1�a2c3 ÿ a3c2 � � e2�a3c1 ÿ a1c3 � � e3�a1c2 ÿ a2c1 ��

B11 � s2s3k2�a2c3 ÿ a3c2�
D2

, B12 � s3s1k2�a3c1 ÿ a1c3�
D2

, B13 � s1s2k2�a1c2 ÿ a2c1�
D2

D2 � s1s2s3�a2c3 ÿ a3c2 � a3c1 ÿ a1c3 � a1c2 ÿ a2c1� �39�

Substituting eqn (39) into eqns (27) and (28) leads to the solution for an annular plate under pure
bending, in which stresses and electric displacements are

sr � 12z

h3
ÿ
r21 ÿ r20

��r21M1 ÿ r20M0 ÿ r20r
2
1�M1 ÿM0�

r2

�

sy � 12z

h3
ÿ
r21 ÿ r20

��r21M1 ÿ r20M0 � r20r
2
1�M1 ÿM0�

r2

�

sz � trz � 0, Dr � Dz � 0 �40�

5.2. Uniform radial electric displacement

The boundary conditions are

r � rk:

8>>><>>>:
sr � 0

trz � 0 �k � 0,1�, z �2
h

2
:

Dr � dk

8>>><>>>:
sz � 0
trz � 0

Dz �2
�r0d0 ÿ r1d1�h

r21 ÿ r20

�41�

Substituting eqn (28) into eqn (41) leads to

X3
i�1

siaiA3i � 0 �42�

X3
i�1

siaiB1i � 0 �43�

X3
i�1

sieiA3i � 0 �44�

H.-J. Ding et al. / International Journal of Solids and Structures 37 (2000) 1293±13261302



X3
i�1

siB1i � 0 �45�

ÿ3r20
X3
i�1

siciA3i �
X3
i�1

siciB1i � r0d0 �46�

ÿ3r21
X3
i�1

siciA3i �
X3
i�1

siciB1i � r1d1 �47�

From eqns (46) and (47), we have

X3
i�1

siciA3i � k3 �48�

X3
i�1

siciB1i � k4 �49�

where

k3 � r0d0 ÿ r1d1

3
ÿ
r21 ÿ r20

� , k4 � r0r1�r1d0 ÿ r0d1�ÿ
r21 ÿ r20

� �50�

The unknown constants A3i can be obtained from eqns (42), (44) and (48) and B1i from eqns (43),
(45) and (49).

A31 � s2s3k3�a2e3 ÿ a3e2 �
D1

, A32 � s3s1k3�a2e1 ÿ a1e2�
D1

, A33 � s1s2k3�a1e2 ÿ a2e1�
D1

B11 � s2s3k4�a2 ÿ a3 �
D2

, B12 � s3s1k4�a3 ÿ a1�
D2

, B13 � s1s2k4�a1 ÿ a2�
D2

�51�

Substituting eqn (51) into eqns (27) and (28) leads to the solution for an annular plate or a hollow
cylinder under uniform radial electric displacement, in which stresses and electric displacements are

sr � sy � sz � trz � 0

Dr � r1d1 ÿ r0d0

r21 ÿ r20
r� r0r1�r1d0 ÿ r0d1�

r21 ÿ r20

1

r

Dz � 2�r0d0 ÿ r1d1 �
r21ÿ2

0

z �52�

The solution for a circular plate or a cylinder can be obtained just by letting r0 � 0 in the above
solution. Similarly, from eqns (40) and (52) it can be seen that stresses and electric displacements are
independent of material constants.
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6. Annular plate simply-supported on outer and inner surfaces under uniform axial loads

Using j3�r, z� and j5�r, z� in eqn (A2) and g1�r, z� and g3�r, z� in eqn (A5) in Appendix A, we
constitute the displacement function

ci � F3ij3�r, zi � � F5ij5�r, zi � � G1ig1�r, zi� � G3ig3�r, zi �

� F3i

�
z3i ÿ

3r2zi
2

�
� F5i

�
z5i ÿ 5r2z3i �

15

8
r4zi

�

�G1izi ln
r

r1
� G3i

��
z3i ÿ

3

2
r2zi

�
ln

r

r1
� 3r2zi

2

�
�53�

where F3i, F5i, G1i and G3i (i = 1, 2, 3) are unknown constants to be determined.
Substituting eqn (53) into eqns (2) and (4) leads to

ur � ÿ3
X3
i�1

F3izirÿ 5
X3
i�1

F5i

�
2rz3i �

3

2
r3zi

�
�
X3
i�1

G1i
zi
r

�
X3
i�1

G3i

�
ÿ 3zir ln

r

r1
� z3i

r
� 3

2
rzi

�

w � 3
X3
i�1

sik1iF3i

�
z2i ÿ

1

2
r2
�
� 5

X3
i�1

sik1iF5i

�
z4i ÿ 3r2z2i �

3

8
r4
�

�3
X3
i�1

sik1iG1i ln
r

r1
�
X3
i�1

sik1iG3i

��
z2i ÿ

1

2
r2
�

ln
r

r1
� 1

2
r2
�

F � 3
X3
i�1

sik2iF3i

�
z2i ÿ

1

2
r2
�
� 5

X3
i�1

sik2iF5i

�
z4i ÿ 3r2z2i �

3

8
r4
�

�
X3
i�1

sik2iG1i ln
r

r1
� 3

X3
i�1

sik2iG3i

��
z2i ÿ

1

2
r2
�

ln
r

r1
� 1

2
r2
�

�54�

sr � 6
X3
i�1

eiF3izi � 5
X3
i�1

F5i

ÿ
4eiz

3
i ÿ 3fir

2zi
�

ÿ2c66
X3
i�1

G1i
zi
r2
�
X3
i�1

G3i

"
6eizi ln

r

r1
ÿ c66

�
2z3i
r2
� 3zi

�#
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sy � 6
X3
i�1

eiF3izi � 5
X3
i�1

F5i

ÿ
4eiz

3
i ÿ 3gir

2zi
�

�2c66
X3
i�1

G1i
zi
r2
�
X3
i�1

G3i

"
6eizi ln

r

r1
� c66

�
2z3i
r2
� 3zi

�#

sz � 6
X3
i�1

aiF3izi � 10
X3
i�1

aiF5i

ÿ
2z3i ÿ 3r2zi

�� 6
X3
i�1

aiG3izi ln
r

r1

trz � ÿ3
X3
i�1

siaiF3irÿ 15
X3
i�1

siaiF5i

�
2rz2i ÿ

1

2
r3
�

�
X3
i�1

siaiG1i
1

r
ÿ 3

X3
i�1

siaiG3i

�
r ln

r

r1
ÿ z2i

r
ÿ r

2

�

Dr � ÿ3
X3
i�1

siciF3irÿ 15
X3
i�1

siciF5i

�
2rz2i ÿ

1

2
r3
�

�
X3
i�1

cisiG1i
1

r
ÿ 3

X3
i�1

cisiG3i

�
r ln

r

r1
ÿ z2i

r
ÿ r

2

�

Dz � 6
X3
i�1

ciF3izi � 10
X3
i�1

ciG5i

ÿ
2z3i ÿ 3r2zi

�� 6
X3
i�1

ciG3izi ln
r

r1
�55�

where

fi � 2ei ÿ c66, gi � 2ei � c66 �56�
The boundary conditions of an annular plate, which is simply-supported on the inner and outer

surfaces and is under uniform axial loads, are

r � rk:

8>>>>>>><>>>>>>>:

�h=2
ÿh=2

zsr dz � 0

wjz�0 � 0�h=2
ÿh=2

Dr dz � 0

�k � 0, 1�, z �2
h

2
:

8>><>>:
sz �2

p1
2

trz � 0
Dz � 0

�57�

From z �2�h=2�: trz � 0, we arrive at
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X3
i�1

siaiG3i � 0 �58�

2
X3
i�1

siaiF3i � 5h2
X3
i�1

s3i aiF5i � 0 �59�

X3
i�1

siaiF5i � 0 �60�

X3
i�1

siaiG1i � 3h2

4

X3
i�1

s3i aiG3i � 0 �61�

Similarly, from z �2�h=2�: Dz � 0, then

X3
i�1

siciG3i � 0 �62�

3
X3
i�1

siciF3i � 5h2

2

X3
i�1

s3i ciF5i � 0 �63�

X3
i�1

siciF5i � 0 �64�

From z �2�h=2�: s2 �2�p=2�, we have

3h
X3
i�1

siaiF3i � 5h3

2

X3
i�1

s3i aiF5i � p1
2

�65�

From eqns (59) and (65), the following equations can be obtained

X3
i�1

siaiF3i � p1
4h

�66�

X3
i�1

s3i aiF5i � ÿ p1
10h3

�67�

F5i can be worked out from eqns (60), (64) and (67).
From r � rk:

� h=2
ÿh=2 Dr dz � 0 �k � 0, 1�, we have
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ÿ3r0
X3
i�1

siciF3i ÿ 5r0h
2

2

X3
i�1

s3i ciF5i ÿ 15r30
2

X3
i�1

siciF5i � 1

r0

X3
i�1

siciG1i

� r0
3

ln
r0
r1

X3
i�1

siciG3i � h2

4r0

X3
i�1

s3i ciG3i � 3r0
2

X3
i�1

siciG3i � 0

�68�

ÿ3r1
X3
i�1

siciF3i ÿ 5r1h
2

2

X3
i�1

s3i ciF5i ÿ 15r31
2

X3
i�1

siciF5i � 1

r1

X3
i�1

siciG1i

� h2
4r1

X3
i�1

s3i ciG3i � 3r1
2

X3
i�1

siciG3i � 0

�69�

By use of eqns (62)±(64), eqns (68) and (69) can be simpli®ed to

X3
i�1

siciG1i � h2

4

X3
i�1

s3i ciG3i � 0 �70�

From r � rk:
� h=2
ÿh=2 zsr, dz � 0 �k � 0, 1�, we get

r20

"
6
X3
i�1

sieiF3i � 3
X3
i�1

si
ÿ
h2s2i ei ÿ 5r20fi

�
F5i

#

ÿ 2c66
X3
i�1

siG1i � 3
X3
i�1

si

"
2eir

2
0 ln

r0
r1
ÿ c66

�
h2

10
s2i � r20

�#
G3i � 0

�71�

r21

"
6
X3
i�1

sieiF3i � 3
X3
i�1

si
ÿ
h2s2i ei ÿ 5r20fi

�
F5i

#
ÿ 2c66

X3
i�1

siG1i ÿ 3c66
X3
i�1

si

�
h2

10
s2i � r21

�
G3i � 0 �72�

Superposing the rigid body solution eqn (9) on the equations above and from r � rk, z = 0: w = 0 (k
= 0, 1), we have

r0

"
2w0 ÿ 3r20

X3
i�1

sik1iF3i � 15

4
r40

X3
i�1

sik1iF5i � 2 ln
r0
r1

X3
i�1

sik1iG1i ÿ 3r20

�
ln
r0
r1
ÿ 1

�X3
i�1

sik1iG3i

#
� 0 �73�

2w0 ÿ 3r21

X3
i�1

sik1iF3i � 15

4
r41

X3
i�1

sik1iF5i � 3r21

X3
i�1

sik1iG3i � 0 �74�

where w0 is a constant to be determined.
Finally, w0, F3i, G1i and G3i can be determined from eqns (58), (61)±(63), (66) and (70)±(74) (ten

equations altogether). Substituting F3i, G1i, G3i and previously obtained F5i back into eqns (54) and (55)
yields the solution for an annular plate that is simply-supported on the outer and inner surfaces and
uniformly loaded on the upper and lower surfaces with 2�p1=2�, respectively.
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Superposing this solution on the solution of an annular plate under axial uniform tension as discussed
in Section 4 and letting p � �p1=2� result in the solution for an annular plate that is simply-supported on
the inner and outer surfaces and is loaded with uniform load p1 on the upper surface. Let
r0 � 0, G1i � G3i � 0, then w0 and F3i can be derived from eqns (63), (66), (72) and (74). Thus, with w0,
F3i and F5i being known, the solution for a circular plate is obtained.

Assume that the thickness of a PZT-4 solid piezoelectric ceramic circular plate h = 0.01 or 0.1 m,
radius r1 � 1 m. The material constants of PZT-4 are shown in Table 1. Based on the equations above,
the de¯ection and moment at the center of the circular plate can be calculated. Assume that a
transversely isotropic circular plate has the same elastic constants as those of PZT-4 and the same
geometric dimensions and boundary conditions. The results of the calculations are listed in Table 2 for
comparison. It is obvious that the de¯ections at the center caused by uniform load p1 on the upper
surface are di�erent, whereas the moments exhibit no noticeable di�erence.

7. Piezoelectric rotating circular shaft and rotating disk

7.1. Particular solution for the case of potential body force

In cylindrical coordinates, the fundamental equations of axisymmetric deformation can be expressed
as three second-order partial di�erential equations in three unknown variables, i.e., displacements ur, w
and electric potential F. When the body force is potential, namely,

Fr � ÿ@V
@r

, Fz � ÿ@V
@z

�75�

then it can be assumed that

ur � @U

@r
, w � @W

@z
, F � @O

@z
�76�

Substituting eqns (75) and (76) into the three second-order partial di�erential equations, the following
equations can readily be derived

Table 1

Elastic constants

(1010 Nmÿ2)
Piezoelectric constants

(Cmÿ2)
Dielectric constants

(10ÿ10 CVÿ1 mÿ1)

c11 c12 c13 c33 c44 e31 e33 e15 e11 e33

12.6 7.78 7.43 11.5 2.56 -5.2 15.1 12.7 64.9 56.2

Table 2

Type of material Thickness of circular

plate (m)

De¯ection at

center (m)

Moment at

center (Nm)

PZT-4 0.01 6.2469 � 10ÿ6p1 0.2220p1
0.1 6.2966 � 10ÿ9p1 0.2220p1

Transversely isotropic material 0.01 9.3627 � 10ÿ6p1 0.2114p1
0.1 9.4493 � 10ÿ9p1 0.2114p1
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D

8<:U
W
O

9=; �
8<:V
V
0

9=; �77�

where U, W and O are functions to be determined, V is the potential of body force and D is a
di�erential operator as described below,

D �

2666666664

c11L� c44
@2

@z2
�c13 � c44 � @

2

@z2
�e31 � e15� @

2

@z2

�c13 � c44 �L c44L� c33
@ 2

@z2
e15L� e33

@2

@z2

�e31 � e15 �L e15L� e33
@ 2

@z2
ÿ
�
e11L� e33

@2

@z2

�

3777777775
�78�

and where L��@2=@r2���1=r��@=@r�. The centrifugal force for uniform rotation is

Fr � rro2, Fz � 0 and V � ÿ1
2
rr2o2 �79�

At this point, V in the second row of eqn (77) equals zero. Introduce a function F such that jDjF � V,
where jDj is the determinant of D. After some manipulations, we arrive at�

a
@6

@z6
� bL

@4

@z4
� cL2 @

2

@z2
� dL3

�
F � 1

2
rr2o2 �80�

where a, b, c and d are constants dependent on material constants (Ding et al., 1996a). It is easy to ®nd
a particular solution of F.

F � ro2

8262422d
r8 �81�

Obviously the particular solution of eqn (77) is8>><>>:
U

W

O

9>>=>>; �
8>><>>:
A11F

A12F

A13F

9>>=>>; �82�

where A11, A12 and A13 are algebraic complements of the ®rst row in D. From eqns (76), (81) and (82),
the particular solution of displacements and electric potential can be found to be

ur � ÿro
2

8c11
r3, w � 0, F � 0 �83�

Substituting eqn (83) into the constitutive relation yields the particular solution of stresses and electric
displacements.

sr � h1r
2, sy � h2r

2, sz � h3r
2, trz � 0, Dr � 0, Dz � h4r

2 �84�

where
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h1 � ÿ�3c11 � c12 �ro2

8c11
, h2 � ÿ�3c12 � c11�ro2

8c11
, h3 � ÿc13ro

2

2c11
, h4 � ÿe31ro

2

2c11
�85�

7.2. Solutions for a piezoelectric rotating disk

The boundary conditions of an annular piezoelectric rotating disk are

r � rk:

8>>>>>>><>>>>>>>:

�h=2
ÿh=2

sr dz � 0

trz � 0�h=2
ÿh=2

Dr dz � 0

�k � 0,1�, z �2
h

2
:

8>><>>:
sz � 0

trz � 0

Dz � d3

�86�

Using j2�r, z� and j4�r, z� in eqn (A2) and go�r, z� in eqn (A5) in Appendix A, we constitute the
displacement function

ci � F2ij2�r, zi � � F4ij4�r, zi � � G0g0�r, zi �

� F2i

�
z2i ÿ

r2

2

�
� F4i

�
z4i ÿ 3r2z2i �

3r4

8

�
� G0 ln

r

r1
, �i � 1, 2, 3� �87�

where F2i, F4i (i = 1, 2, 3) and G0 are unknown constants to be determined.
Substituting eqn (87) into eqns (2) and (4) leads to a solution. Superposing that solution with the

particular solution represented by eqns (83) and (84) results in

ur � ÿ
X3
i�1

F2ir� 3
X3
i�1

F4i

�
ÿ 2rz2i �

1

2
r3
�
� G0

1

r
ÿ ro2

8c11
r3

w � 2
X3
i�1

sik1iF2izi � 2
X3
i�1

sik1iF4i

ÿ
2z3i ÿ 3r2zi

�

F � 2
X3
i�1

sik2iF2izi � 2
X3
i�1

sik2iF4i

ÿ
2z3i ÿ 3r2zi

� �88�

sr � 2
X3
i�1

eiF2i � 3
X3
i�1

F4i

ÿÿ fir
2 � 4eiz

2
i

�ÿ 2c66G0
1

r2
� h1r

2

sy � 2
X3
i�1

eiF2i � 3
X3
i�1

F4i

ÿÿ gir
2 � 4eiz

2
i

�ÿ 2c66G0
1

r2
� h2r

2
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sz � 2
X3
i�1

aiF2i � 6
X3
i�1

aiF4i

ÿ
2z2i ÿ r2

�� h3r
2, trz � ÿ12

X3
i�1

siaiF4irzi

Dr � ÿ12
X3
i�1

siciF4irzi, Dz � 2
X3
i�1

ciF2i � 6
X3
i�1

ciF4i

ÿ
2z2i ÿ r2

�� h4r
2 �89�

Substituting eqn (89) into eqn (86), we have

2r20

X3
i�1

eiF2i ÿ r20

X3
i�1

F4i

ÿ
3fir

2
0 ÿ h2s2i ei

�� 2c66G0 � h1r
4
0 � 0

2r21

X3
i�1

eiF2i ÿ r21

X3
i�1

F4i

ÿ
3fir

2
1 ÿ h2s2i ei

�� 2c66G0 � h1r
4
1 � 0

X3
i�1

s2i aiF4i � 0

2
X3
i�1

aiF2i � 3h2
X3
i�1

s2i aiF4i � 0

6
X3
i�1

aiF4i ÿ h3 � 0

2
X3
i�1

ciF2i � 3h2
X3
i�1

s2i ciF4i � d3

6
X3
i�1

ciF4i ÿ h4 � 0 �90�

Solve eqn (90) successively, then F4i, F2i and G0 will be obtained in turn. Substituting F4i, F2i and G0

back into eqns (88) and (89) yields the solution of an annular piezoelectric rotating disk. Set r0 � 0 and
G0 � 0, in eqn (90), then F4i and F2i can be calculated from eqn (90), that is, the solution for a solid
piezoelectric rotating disk is obtained.

7.3. Solution for piezoelectric rotating circular shafts

The boundary conditions of a hollow piezoelectric rotating shaft are:
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z �2
h

2
:

8>>>>>><>>>>>>:

2p
�r1
20

szr dr � 0

trz � 0 r � rk:

2p
�r1
r0

Dzr dr � p
ÿ
r21 ÿ r20

�
d0

8<: sr � 0
trz � 0 �k � 0, 1�
Dr � 0

�91�

Set F4i � 0 in eqns (88) and (89) and substitute eqn (89) into the boundary conditions eqn (91), then we
have

4
X3
i�1

aiF2i � h3
ÿ
r21 � r20

� � 0

4
X3
i�1

ciF2i � h4
ÿ
r21 � r20

� � 2d0

2r20

X3
i�1

eiF2i ÿ 2c66G0 � h1r
4
0 � 0

2r21

X3
i�1

eiF2i ÿ 2c66G0 � h1r
4
1 � 0 �92�

Solve eqn (92) simultaneously, then we get F2i and G0. Substituting F2i and G0 back into eqns (88) and
(89) and letting F4i � 0 give the solution for a hollow piezoelectric rotating shaft. Let r0 � 0 and G0 � 0
in eqns (88) and (89), then F2i can be calculated, that is, the solution for a piezoelectric rotating circular
shaft is obtained. In the following sections we proceed to the equilibrium of a cone or a hollow cone,
which is traction-free except at the apex. In Appendix B, the set-up of a coordinate system is described
and the boundary conditions as well as the equilibrium equations of relevant forces are also listed.

8. Torsion problem of a cone loaded with concentrated force couple Mz at the apex

This is a free torsion problem of a cone, we take

ci � 0, �i � 1, 2, 3� and c0 �
A0

R0
�93�

where A0 are unknown constants to be determined and

R0 �
ÿ
r2 � s20z

2
�1=2 �94�

Substituting eqn (93) into eqns (2) and (4) leads to

ur � w � F � 0, uy � ÿA0
r

R3
0

�95�
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try � c66
3r2

R5
0

A0, tyz � c44
3s20rz

R5
0

A0, Dy � e15
3s20rz

R5
0

A0

sr � sy � sz � trz � Dr � Dz � 0 �96�
Substituting eqn (96) into eqn (B1a) indicates that eqn (B1a) has been satis®ed. Constant A0 can be
determined by the global equilibrium condition eqn (B4c), i.e.,

Mz �
�2p
0

�btana

0

rtryr dr dy � 0 �97�

Substituting try in eqn (96) into eqn (97) gives

A0 �Mz

,"
2pc66

 
3 tan2a� 2s20ÿ
tan2a� s20

�3=2 ÿ 2

s0

!#
�98�

When the cone reduces to a half-space, i.e., a � p=2, then A0 � ÿMzs0=�4pc66�.

9. Solution for a cone subjected to concentrated force Pz and point charge Q

This is an axisymmetric deformation problem, we take

c0 � 0, ci � Ai ln �Ri � zi �, �i � 1, 2, 3� �99�
where Ai �i � 1, 2, 3� are unknown constants to be determined and

Ri �
ÿ
r2 � s2i z

2
�1=2

, �i � 1, 2, 3� �100�
Substituting eqn (99) into eqns (2) and (4) gives

ur �
X3
i�1

Ai
r

Ri�Ri � zi � , w �
X3
i�1

sik1i
Ai

Ri

F �
X3
i�1

sik2i
Ai

Ri
, uy � 0 �101�

sr � ÿ2c66
X3
i�1

Ai
1

Ri�Ri � zi � ÿ
X3
i�1

niAi
zi

R3
i

sy � 2c66
X3
i�1

Ai
1

Ri�Ri � zi � ÿ
X3
i�1

miAi
zi

R3
i

sz � ÿ
X3
i�1

aiAi
zi

R3
i

, trz � ÿ
X3
i�1

siaiAi
r

R3
i
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Dr � ÿ
X3
i�1

siciAi
r

R3
i

, Dz � ÿ
X3
i�1

ciAi
zi

R3
i

try � tyz � Dy � 0 �102�
The second equation of the boundary conditions on the cone surface, eqn (B1a), has been satis®ed

and the third and fourth equations can be deduced from the global equilibrium. Thus, only the ®rst
equation of the boundary condition eqn (B1a) and the following global equilibrium conditions need to
be satis®ed.

Pz �
�2p
0

�b tan a

0

szr dr dy � 0, Q �
�2p
0

�b tan a

0

Dzr dr dy �103�

Substituting the relevant expressions in eqn (102) into eqn (103) and the ®rst expression of eqn (B1a)
gives

X3
i�1

�
si

Hi tan a
ÿ 1

�
aiAi � ÿPz=�2p�

X3
i�1

�
si

Hi tan a
ÿ 1

�
ciAi � Q=�2p�

X3
i�1

�
siai tan a

H 3
i

ÿ 2c66
HiNi

ÿ nisi

tan aH 3
i

�
Ai � 0 �104�

where

Hi �
��������������������������
1� s2i =tan2 a

q
, Ni � �Hi � si=tan a�, �i � 0, 1, 2, 3� �105�

Ai can be obtained by solving eqn (104). When the cone reduces to a half-space, i.e., a � p=2, we have

A1 �
�
Pz�s2a2c3 ÿ s3a3c2� �Q�s2a2a3 ÿ s3a3a2�

�
=D

A2 �
�
Pz�s3a3c1 ÿ s1a1c3� �Q�s3a3a1 ÿ s1a1a3�

�
=D

A3 �
�
Pz�s1a1c2 ÿ s2a2c1� �Q�s1a1a2 ÿ s2a2a1�

�
=D �106�

where

D � 2p

��������
a1 a2 a3

c1 c2 c3

s1a1 s2a2 s3a3

�������� �107�
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10. Bending problem of a cone loaded with concentrated force Px at its apex

Take

c0 �
A0r sin y
R0 � z0

, ci �
Air cos y
Ri � zi

, �i � 1, 2, 3� �108�

where A0 and Ai�i � 1, 2, 3� are unknown constants to be determined.
Substituting eqn (108) into eqns (2) and (4) gives

ur �
X3
i�1

Ai

 
1

Ri � zi
ÿ r2

Ri�Ri � zi �2
!

cos yÿ A0 cos y
R0 � z0

uy � ÿ
X3
i�1

Ai
sin y
Ri � zi

�
 

1

R0 � z0
ÿ r2

R0�R0 � z0�2
!
A0 sin y

w � ÿ
X3
i�1

sik1i
Air cos y
Ri�Ri � zi � , F � ÿ

X3
i�1

sik2i
Air cos y
Ri�Ri � zi � �109�

sr � 2c66
r cos y

R0�R0 � z0�2
A0 � 2c66

X3
i�1

Ai
r cos y

Ri�Ri � zi �2
�
X3
i�1

niAi
r cos y
R3

i

sy � ÿ2c66 r cos y

R0�R0 � z0 �2
A0 ÿ 2c66

X3
i�1

Ai
r cos y

Ri�Ri � zi �2
�
X3
i�1

miAi
r cos y
R3

i

sz �
X3
i�1

aiAi
r cos y
R3

i

, Dz �
X3
i�1

ciAi
r cos y
R3

i

try � c66
X3
i�1

Ai
2r sin y

Ri�Ri � zi �2
� c66

 
ÿ 2r sin y

R0�R0 � z0�2
� r3 sin y

R3
0�R0 � z0�2

� 2r3 sin y

R2
0�R0 � z0 �3

!
A0

trz �
X3
i�1

siaiAi

�
1

Ri�Ri � zi� ÿ
zi

R3
i

�
cos y� s0c44

cos y
R0�R0 � z0�A0

tyz �
X3
i�1

siai
sin y

Ri�Ri � zi �Ai � s0c44A0

 
1

R0�R0 � z0� ÿ
z0

R3
0

!
sin y

Dr �
X3
i�1

siciAi

�
1

Ri�Ri � zi � ÿ
zi

R3
i

�
cos y� s0e15

cos y
R0�R0 � z0�A0
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Dy �
X3
i�1

sici
sin y

Ri�Ri � zi �Ai � s0e15A0

 
1

R0�R0 � z0 � ÿ
z0

R3
0

!
sin y �110�

Under the condition of traction-free cone surface, it can be proved without much di�culty that either
the ®rst or the second expression of the boundary condition eqn (B1a), is needed, if the following
equation is required to hold in eqn (B2a)

Px �
�2p
0

�btana

0

�trz cos yÿ tyz sin y�r dr dy � 0 �111�

Substituting relevant expressions of eqn (110) into eqn (111) and expressions 1, 3 and 4 of eqn (B1a)
leads to

X3
i�1

siai

�
1ÿ si

Hi tan a

�
Ai ÿ c44s0

�
1ÿ s0

H0 tan a

�
A0 � Px

p

X3
i�1

"
2c66

HiN
2
i

� ni

H 3
i

ÿ siai

�
tan a
HiNi

ÿ si

H 3
i

�#
Ai �

 
2c66

H0N
2
0

ÿ c44s0 tan a
H0N0

!
A0 � 0

X3
i�1

 
siai
HiNi

ÿ s2i ai

tan aH 3
i

ÿ ai tan a
H 3

i

!
Ai � c44s0

H0N0
A0 � 0

X3
i�1

 
sici
HiNi

ÿ s2i ci

tan aH 3
i

ÿ ci tan a
H 3

i

!
Ai � e15s0

H0N0
A0 � 0 �112�

Hence, Ai can be obtained by solving eqn (112). When the cone reduces to a half-space, i.e., a � p=2, we
have

A0 � ÿPx=2ps0c44, A1 �
�
Px�a2c3 ÿ a3c2�

�
=D

A2 �
�
Px�a3c1 ÿ a1c3�

�
=D, A3 �

�
Px�a1c2 ÿ a2c1�

�
=D �113�

where D is the same as eqn (107).

11. Bending problem of a cone subjected to concentrated force couple My at its apex

Take

c0 �
A0r sin y

R0�R0 � z0� , ci �
Air cos y
Ri�Ri � zi � �i � 1, 2, 3� �114�

where A0 and Ai �i � 1, 2, 3� are unknown constants to be determined.
Substituting eqn (114) into eqns (2) and (4) gives:
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ur �
X3
i�1

A0

�
zi

R3
i

ÿ 1

Ri�Ri � zi �
�

cos yÿ A0 cos y
R0�R0 � z0�

uy �
X3
i�1

Ai sin y
Ri�Ri � zi � � A0 sin y

 
z0

R3
0

ÿ 1

R0�R0 � z0�

!

w � ÿ
X3
i�1

sik1iAi
r cos y
R3

i

, F � ÿ
X3
i�1

sik2i
r cos y
R3

i

Ai �115�

sr � ÿ2c66
X3
i�1

�
zi

R3
i

ÿ 2

Ri�Ri � zi �
�

cos y
r

Ai �
X3
i�1

ni
3zir cos y

R5
i

Ai

�2c66A0 cos y
r

 
2

R0�R0 � z0� ÿ
z0

R3
0

!

sy � 2c66
X3
i�1

�
zi

R3
i

ÿ 2

Ri�Ri � zi �
�

cos y
r

Ai �
X3
i�1

mi
3zir cos y

R5
i

Ai

ÿ2c66A0 cos y
r

 
2

R0�R0 � z0� ÿ
z0

R3
0

!

sz �
X3
i�1

ai
3zir cos y

R5
i

Ai

try � 2c66
X3
i�1

�
2

Ri�Ri � zi � ÿ
zi

R3
i

�
sin y
r

Ai

�2c66A0 sin y
r

 
2

R0�R0 � z0� ÿ
z0

R3
0

!
ÿ c66

3z0r sin y
R5

0

A0

trz �
X3
i�1

Aisiai
3r2

R5
i

cos yÿ
X3
i�1

Aisiai
cos y
R3

i

� A0s0c44
cos y
R3

0

tyz �
X3
i�1

Aisiai
sin y
R3

i

� A0s0c44 sin y

 
3r2

R5
0

ÿ 1

R3
0

!
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Dr �
X3
i�1

Aisici
3r2

R5
i

cos yÿ
X3
i�1

Aisici
cos y
R3

i

� s0e0A0
cos y
R3

0

Dy �
X3
i�1

Aisici
sin y
R3

i

� A0s0e15 sin y

 
3r2

R5
0

ÿ 1

R3
0

!
, Dz �

X3
i�1

ci
3zir cos y

R5
i

Ai �116�

If in the cone surface boundary condition eqn (B1a), X a
z � 0 and Da

n � 0 are required to hold and the
following eqn (117) is also required to hold, then from eqn (B4b), it can be inferred that either X a

r � 0
or X a

y � 0 is needed.

My �
�2p
0

�btana

0

�
b�trz cos yÿ tyz sin y� ÿ rsz cos y

�
r dr dy � 0 �117�

From eqn (B2a), we have�2p
0

�btana

0

�trz cos yÿ tyz sin y�r dr dy � 0 �118�

Then, eqn (117) can be simpli®ed to

My ÿ
�2p
0

�btana

0

r2sz cos y dr dy � 0 �119�

From eqn (119) as well as X a
r � 0, X a

z � 0 and Da
n � 0, the following system of equations in A0, A1, A2

and A3 is formed.

X3
i�1

ai

 
s2i

H 3
i tan3 a

ÿ 3si
Hi tan a

ÿ 2

!
Ai � My

p

X3
i�1

�
2c66

�
2

HiNi
ÿ si

tan aH 3
i

�
� 3sini

tan aH 5
i

ÿ tan a
�
3siai

H 5
i

ÿ siai

H 3
i

��
Ai

�
"
2c66

 
2

H0N0
ÿ s0

tan aH 3
0

!
ÿ s0c44

tan a
H 3

0

#
A0 � 0

X3
i�1

�
siai

H 5
i

ÿ siai

H 3
i

ÿ 3siai

H 5
i

�
Ai � s0c44

H 3
0

A0 � 0

X3
i�1

�
sici

H 5
i

ÿ sici

H 3
i

ÿ 3sici

H 5
i

�
Ai � s0e15

H 3
0

A0 � 0 �120�

Consequently, Ai can be calculated from eqn (120).
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12. Hollow cone problem

With respect to Mz torsion problem, A0 can be calculated just by rewriting eqn (97) into the following
form

Mz �
�2p
0

�btana

btanb
rtryr dr dy � 0 �97a�

As for the problem of Pz plus Q, take

c0 � 0, ci � Ai ln �Ri � zi � � Bi ln �Ri ÿ zi �, �i � 1, 2, 3� �99a�
Then, from the global equilibrium of Pz and Q

Pz �
�2p
0

�btana

btanb
szr dr dy � 0, Q �

�2p
0

�btana

btanb
Dzr dr dy �103a�

as well as X a
z�0, Da

n�0, X a
r �0, and X b

r � 0, Ai and Bi can be determined.
In regard to the Px bending problem, take

c0 �
A0r sin y
R0 � z0

� B0r sin y
R0 ÿ z0

, ci �
Air cos y
Ri � zi

� Bir cos y
Ri ÿ zi

, �i � 1, 2, 3� �108a�

From the global equilibrium condition of Px

Px �
�2p
0

�btana

btanb
�trzcos yÿ tyz sin y�r dr dy � 0 �111a�

as well as X a
r � 0, X b

r � 0, X a
y � 0, X a

z � 0, X b
z � 0, Da

n � 0, and Db
n � 0, constants Ai and Bi can be

determined.
Regarding the My bending problem, take

c0 �
A0r sin y

R0�R0 � z0� �
B0r sin y

R0�R0 ÿ z0�

ci �
Ai cos y

Ri�Ri � zi � �
Bi cos y

Ri�Ri ÿ zi� �114a�

From the global equilibrium condition of My

My ÿ
�2p
0

�btana

btanb
r2sz cos y dr dy � 0 �119a�

as well as X a
r � 0, X b

r � 0, X a
y � 0, X a

z � 0, X b
z � 0, Da

n � 0 and Db
n � 0, constants Ai and Bi can be

determined.

13. Conclusions

Due to material anisotropy and coupling between mechanical deformation and electric ®eld, analytical
solutions for piezoelectric materials are much more di�cult to obtain and the process of solution is
more complicated, compared with those in elasticity theory of isotropic materials. In general, stress
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components and displacements are dependent on material constants as shown in Table 2. However, in
some solutions, stresses and electric displacements are independent of material constants, as shown in
eqns (19), (25), (40) and (52). Furthermore, eqns (95), (96) and (98) show independence of piezoelectric
constants and dielectric constants, yet dependence on elastic constants. All these results indicate that
stress components in these solutions agree with those of the theory of elasticity for isotropic materials.
Eqn (4) gives the stress components and electric displacements in terms of displacement functions, which
automatically satisfy the equilibrium equations and Gauss equation provided that eqn (3) is satis®ed. It
should be noted that eqn (4) is di�erent from eqn (6) of Ding et al. (1997a) in this sense. Making use of
eqn (4) may bring convenience to the study of equilibrium problems. The analytical solutions obtained
in the paper are also useful for the study of other problems relating to more complicated loads and
boundary conditions by the superposition principle. Moreover, these solutions can serve as benchmarks
for numerical methods such as the ®nite element method, the boundary element method, etc. All
problems solved in the paper are listed in a table in Appendix C in order that they can be intuitively
understood and conveniently applied.
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Appendix A: several harmonic function series

1. Harmonic polynomials for axisymmetric problems can be written in the following form:

jn�r, z� � zn �
X�n=2�
m�1
� ÿ 1�mn�nÿ 1�, . . . , �nÿ 2m� 1�

22mm2�mÿ 1�2. . . 1
znÿ2mr2m �A1�

where [n/2] denotes the largest integer E�n=2�. From eqn (A1), the ®rst six harmonic polynomials can
be written as follows:

j0�r, z� � 1, j1�r, z� � z, j2�r, z� � z2 ÿ 1
2r

2, j3�r, z� � z3 ÿ 3
2r

2z

j4�r, z� � z4 ÿ 3r2z2 � 3
8r

4, j5�r, z� � z5 ÿ 5r2z3 � 15
8 r

4z �A2�
2. A harmonic function series containing ln �r=r1� �r1 is a nonzero constant).

Another harmonic function series corresponding to jn�r, z� that contains ln �r=r1� is

gn�r, z� � jn�r, z� ln
r

r1
�Qn�r, z� �A3�

where

Qn�r, z� � ÿ
X�n=2�
m�1
� ÿ 1�mn�nÿ 1�, . . . , �nÿ 2m� 1�

22mm2�mÿ 1�2. . . 1

�
1

m
� 1

mÿ 1
� . . .� 1

�
znÿ2mr2m �A4�

By eqns (A3) and (A4), the ®rst six harmonic functions are written as follows:

g0�r, z� � ln
r

r1
, g1�r, z� � z ln

r

r1
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g2�r, z� �
�
z2 ÿ 1

2
r2
�

ln
r

r1
� r2

2

g3�r, z� �
�
z3 ÿ 3

2
r2z

�
ln

r

r1
� 3

2
r2z

g4�r, z� �
�
z4 ÿ 3r2z2 � 3

8
r4
�

ln
r

r1
� 3r2z2 ÿ 9

16
r4

g5�r, z� �
�
z5 ÿ 5r2z3 � 15

8
r4z

�
ln

r

r1
� 5r2z3 ÿ 45

16
r4z �A5�

3. It is not di�cult to directly verify that the following functions are all harmonic functions

3:1:
1

R
�A6�

where R � ��������������
r2 � z2
p

3:2: ln �R� z� and ln �Rÿ z� �A7�

3:3:
r sin y
R� z

,
r cos y
R� z

,
r sin y
Rÿ z

,
r cos y
Rÿ z

�A8�

3:4:
r sin y

R�R� z� ,
r cos y

R�R� z� ,
r sin y

R�Rÿ z� ,
r cos y

R�Rÿ z� �A9�

Appendix B: boundary conditions of a hollow cone

A hollow cone (the apex angle 2a > 2b� is considered. The origin of the coordinate system is taken to
be the apex of the cone, and the z-axis be the common axis of the cone, which points into the cone. The
xy-plane is parallel to the isotropic plane. Concentrated force P � Pxi� Pyj� Pzk, concentrated force
couple M �Mxi�Myj�Mzk and point charge Q are applied at the apex of the cone, where i, j, k are
three unit vectors of a Cartesian coordinate system. Besides, the cone is loaded with surface forces:
�X
a
r ,

�X
a
y,

�X
a
z ,

�X
a
r ,

�X
b
y ,

�X
b
z and prescribed electric displacements �D

a
n and �D

b
n .

In cylindrical coordinates, the boundary conditions on the surface are:

z=r � cot a:
X a

r � sr cos aÿ trz sin a � �X
a
r , X a

y � try cos aÿ tyz sin a � �X
a
y

X a
z � trz cos aÿ sz sin a � �X

a
z , Da

n � Dr cos aÿDz sin a � �D
a
n

�B1a�

z=r � cot b:
X b

r � sr cos bÿ trz sin b � �X
b
r , X b

y � try cos bÿ tyz sin b � �X
b
y

X b
z � trz cos bÿ sz sin b � �X

b
z , Db

n � Dr cos bÿDz sin b � �D
b
n

�B1b�

Cut o� a section of the cone by z = b (constant) and the global equilibrium equations of this section are:
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Px �
�2p
0

�btana

btanb
�trz cos yÿ tyz sin y�r dr dy�

�2p
0

�b
0

�
�X
a
r cos yÿ �X

a
y sin y

�
z dz dy tan a=cos a

�
�2p
0

�b
0

�
�X
b
r cos yÿ �X

b
y sin y

�
z dz dy tan b=cos b � 0 �B2a�

Py �
�2p
0

�btana

btanb
�trz sin y� tyz cos y�r dr dy�

�2p
0

�b
0

�
�X
a
r sin y� �X

a
y cos y

�
z dz dy tan a=cos a

�
�2p
0

�b
0

�
�X
b
r sin y� �X

b
y cos y

�
z dz dy tan b=cos b � 0 �B2b�

Pz �
�2p
0

�btana

btanb
szr dr dy�

�2p
0

�b
0

�X
a
zz dz dy tan a=cos a�

�2p
0

�b
0

�X
b
z z dz dy tan b=cos b � 0 �B2c�

Q �
�2p
0

�btana

btanb
Dzr dr dy�

�2p
0

�b
0

�D
a
nz dz dy tan a=cos a�

�2p
0

�b
0

�D
b
nz dz dy tan b=cos b �B3�

Mx ÿ
�2p
0

�btana

btanb

�
b�tyz cos y� trz sin y� ÿ rsz sin y

�
r dr dy

ÿ
�2p
0

�b
0

�
�X
a
y cos y� �X

a
r sin yÿ �X

a
z sin y tan a

�
z2 dz dy tan a=cos a

ÿ
�2p
0

�b
0

�
�X
b
y cos y� �X

b
r sin yÿ �X

b
z sin y tan b

�
z2 dz dy tan b=cos b � 0 �B4a�

My ÿ
�2p
0

�btana

btanb

�
b�tyz sin yÿ trz cos y� � rsz cos y

�
r dr dy

ÿ
�2p
0

�b
0

�
�X
a
y sin yÿ �X

a
r cos y� �X

a
z cos y tan a

�
z2 dz dy tan a=cos a

ÿ
�2p
0

�b
0

�
�X
b
y sin yÿ �X

b
r cos y� �X

b
z cos y tan b

�
z2 dz dy tan b=cos b � 0 �B4b�

Mz �
�2p
0

�btana

btanb
tyzr2 dr dy�

�2p
0

�b
0

�X
a
yz

2 dz dy tan2 a=cos a�
�2p
0

�b
0

�X
b
yz

2 dz dy tan2 b=cos b � 0 �B4c�

It is worth noting that in the ®rst integral of eqns (B2a)±(B4a), z = b and in the last two integrals r = z
tan a and r = z tan b, respectively. As for the solid cone problem, let b � 0 in the above equations �2a is
the apex angle of the cone) and eqn (B1b) does not need to be considered.
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Appendix C: list of problems solved in this paper

H.-J. Ding et al. / International Journal of Solids and Structures 37 (2000) 1293±1326 1323

No. Problem Location Solution

1 Rigid body displacement Section 3 Eqn(9)

2 Identical electric Section 3 Eqn (10)
potential

3 Uniform radial Section 4.1 Eqns (12), (17)
compression and (19)

Illustration

z

h/2

:::, . 1:: =:Ir.,~ Jf,
'~f It' :tr·I:::

-h/2

r

4

5

6

7

8

9

10

11

Uniform axial tension

Uniform axial electric
displacement

Pure bending

Uniform radial electric
displacements

Annular plates WIder
Wliform axial loads on

double surface

Annular plates Wlder
Wliform axial loads on

top surface
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Section 4.3 Eqns (12), (23)
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Section 5.1 Eqns (27), (39)
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Section 5.2 Eqns (27), (51)
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Section 6 Eqns (9),(54),
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-(64), (66),(67)
and (70)-(74)

Section 6 Superposing the
solution ofNo.8
with that of No.4

(where

P = PI /2)
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and (90)

Section 7 Eqns (88), (89)
(where

F4i = 0), and
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Note: A series of analytic solutions of the annular plate, circular plate, cylinder and hollow cylinder is
obtained in this paper. To save space, we only list the annular plates and hollow cylinders in the above
table. The solutions of the circular plate and the cylinder could be obtained by letting r0=0, B0=B1i=0
and G0= G1i=G3i=0 in the corresponding solutions of the annular plate and hollow cylinder.

Appendix D: nomenclature

ai �i � 1, 2, 3� constants de®ned in eqn (5)
ci �i � 1, 2, 3� constants de®ned in eqn (5)
cijkl elastic sti�ness constants
c11, c12, c13, c33, c44 independent elastic sti�ness constants of the transversely piezoelectric media
d0, d1 uniform radial electric displacement loaded on the inner and outer surfaces of

the annular plate or the hollow cylinder and rotating shaft
d2 uniform axial electrical displacement loaded on the annular plate or hollow

cylinder
d3 uniform axial electric displacement loaded on the rotating disk
Di components of electric displacement
�D
a
n,

�D
b
n surface electric displacement loaded on the cone de®ned in eqn (B1a)

Dr, Dy, Dz components of electric displacement in the cylinder coordinate
ei �i � 1, 2, 3� constants de®ned in eqn (14)
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Ei components of the electric ®eld
ekij piezoelectric constants
e31, e15, e33 independent piezoelectric constants of the transversely piezoelectric media
fi �i � 1, 2, 3� constants de®ned in eqn (56)
Fi body force
gi �i � 1, 2, 3� constants de®ned in eqn (56)
h thickness (height) of the annular plate (or hollow cylinder, rotating disk and

rotating circular shaft)
Hi �i � 0, 1, 2, 3� functions de®ned in eqn (105)
k1i, k2i �i � 1, 2, 3� constants de®ned in eqn (41) in Ding et al. (1996a)
mi �i � 1, 2, 3� constants de®ned in eqn (5)
Mx, My, Mz moments along the positive directions of x-, y- and z-axes applied at the apex

of the cone
M1, M2 bending moment loaded on the inner and outer sides of the annular plate or

hollow cylinder
ni �i � 1, 2, 3� constants de®ned in eqn (5)
Ni �i � 0, 1, 2, 3� functions de®ned in eqn (105)
p uniform axial tension loaded on the annular plate or hollow cylinder
p1 uniform axial loads on the annular plate simply-supported on the outer and

inner surfaces
Px, Py, Pz concentrated forces along the position directions of x-, y- and z-axes applied at

the apex of the cone
q0, q1 uniform radial compression loaded on the inner and outer surfaces of the

annular plate or hollow cylinder
Q point charge applied at the apex of the cone
r, y, z coordinate axes in the cylinder coordinate oryz
r0 inner radius of the annular plate (or hollow cylinder, rotating disk and rotating

circular shaft)
r1 outer radius of the annular plate (or hollow cylinder, rotating disk and rotating

circular shaft)
R0, Ri �i � 1, 2, 3� harmonic functions de®ned in eqn (94) and (100), respectively
s0 �

��������������
c66=c44
p

si �i � 1, 2, 3� characteristic roots of a sixth-degree equation de®ned in eqn (32) in Ding et al.
(1996), which satisfy Re �si � > 0

ui components of displacement
ur, uy, w components of displacement in the cylinder coordinate
w0 rigid body displacement
x, y, z coordinate axes in the Cartesian coordinate Oxyz
�X
a
r ,

�X
a
y,

�X
a
z ,

�X
b
r ,

�X
b
y ,

�X
b
z surface forces loaded on the cone de®ned in eqn (B1a)

zi �i � 1, 2, 3�= siz
gn �n � 1, 2, 3 . . .� harmonic polynomials de®ned in eqn (A3)
2a apex angle of the cone or outer apex angle of the hollow cone
2b inner apex angle of the hollow cone
eij dielectric constants
�eij components of strain
e11, e33 independent dielectric constants of the transversely piezoelectric media
r material density
rf density of free charges
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sij components of stress
sr, sy, sz, tyz, tzr, try components of stress in the cylinder coordinate
F electric potential
F0 identical electric potential
jn �n � 1, 2, 3 . . .� harmonic polynomials de®ned in eqn (A1)
c0, ci �i � 1, 2, 3� displacement function
o angular velocity of the rotating disk or the rotating circular shaft
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