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Abstract

By means of the three-dimensional general solution in displacement functions (weighted harmonic functions) for
piezoelectric materials, the general solution of stress components and electric displacements expressed by the
displacement functions is derived by use of the constitutive relation and the equilibrium equations. Based on this
general solution, a series of problems is solved by the trial-and-error method, including circular plate (or cylinder),
annular plate (or hollow cylinder), cone and hollow cone. These problems are circular plates and cylinders under
uniform radial or axial tension and electric displacements as well as pure bending, simply-supported circular plates
subjected to uniformly distributed loads, rotating disks and circular shafts, cones or hollow cones subjected to
concentrated forces plus charge and concentrated force couple at their apex, etc. Analytical solutions to various
problems are obtained. When the cone apex angle 2o equals 7, the solutions for the cases of concentrated forces
plus point charges and torsion reduce to the simple and practical solutions of the half-space problem. © 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

Both class 6 mm crystals and piezoelectric ceramics of similar crystal symmetry belong to transversely
isotropic piezoelectric material. Due to its excellent piezoelectric properties, it has found widespread
applications. Therefore, it is necessary to make theoretical analysis and accurate quantitative
descriptions of electric and stress fields inside piezoelectric ceramic components in the working condition
caused by the joint action of mechanical loads and electric fields, from the point of view of electro-
mechanical coupling. There is a series of classical problems concerning the body of revolution in the
theory of elasticity as shown in Timoshenko and Goodier (1970) and Love (1994), including circular
plates or cylinders under uniform axial and radial tension (or compression) and pure bending, simply-
supported circular plates subjected to uniformly-distributed loads and uniformly rotating circular shafts
and disks, etc. Love (1994) and Luré (1964) reported the solutions of the problem of a cone subjected to
concentrated forces at its apex, while there is little study on the annular plate, the hollow cylinder and
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the hollow cone. As for transversely isotropic materials, Lekhniskii (1981) and Hu (1953) studied the
problem of plate bending and the bending and compression problems of a cone subjected to
concentrated forces at its apex. Chen (1965) studied the bending problem of a hollow cone subjected to
concentrated forces at its apex, in addition to a solid cone problem. Furthermore, Ding et al. (1995)
investigated the compression, bending and torsion problems of a spherically isotropic cone subjected to
concentrated forces and force couples.

In regard to piezoelectric materials, Kogan et al. (1996) gave an analytical solution of infinite body
with spheroidal inclusion under the joint action of uniform loads, electric displacement, in-plane shear
and off-plane shear. Lee and Jiang (1996) made an accurate three-dimensional analysis of a simply-
supported rectangular piezoelectric plate by state space approach. Ding et al. (1996b) transformed the
basic equations for the case of a distributed body force and a body electric charge into a series of
volume potential problems. A closed-form fundamental solution for the case of characteristics roots s; #
s2 # 53 # 51 was obtained by means of integration, which is of simple form. Dunn and Wienecke (1996)
also gave the closed-form fundamental solution for characteristics roots sy # sy # 53 # 51 using the
general solution and trial-and-error method. Ding et al. (1997a), by use of a simpler general solution
and the trial-and-error method, gave the fundamental solutions for all cases of characteristic roots (s; #
Sy £ 83 £ 81, S] £ 2 =53, 81 =5, =us3) and Green’s function for semi-infinite body and two-phase material.
Sosa and Castro (1994) presented the solutions for the cases of concentrated loads and point charge
applied at the line boundary of a piezoelectric half-plane. Ding et al. (1997b) obtained the solutions for
a piezoelectric wedge subjected to concentrated forces and point charge. Ding et al. (1996a) also gave
the solution of concentrated forces applied at the boundary of a piezoelectric half-plane, which was
derived by the Fourier transform.

In this paper, the equilibrium of two important classes of piezoelectric body of revolution—circular
plate (or cylinder) and cone, is systematically studied and a series of analytical solutions is acquired,
which includes circular plates or cylinders under uniform axial and radial tension plus uniform electric
displacements and pure bending, simply-supported circular plates subjected to uniformly distributed
loads, rotating disks and circular shafts, as well as cones or hollow cones subjected to concentrated
forces plus point charge and concentrated force couple at their apex, etc. When the apex angle of the
cone 2o is 7, the solutions for concentrated forces plus point charge and torsion are able to reduce to
the solutions of the half-space problem, which are simple in form and easy to verify and utilize. In the
following process of solution, as for the circular plate and cylinder problems, the solutions for the
annular plate and the hollow cylinder are first deduced, then these solutions are reduced to the solutions
for a solid circular plate and a cylinder. With respect to the cone and hollow cone problems, the cone
problem is studied first, then the method will be extended to the hollow cone problem.

2. General solution to the problem of the piezoelectric body of revolution

As suggested by Sosa and Castro (1993), the governing equations for the theory of piezoelectricity
are:
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D; = ejer + ei B
_ 1
&y = S (Uij + i)

Ei=-0; (M

where oy, &, u;, E; and D; are the components of stress, strain, displacement, electric field and electric
displacement, respectively; ® is the electrical potential; p, Fi, p, are material density, body force and
density of free charges, respectively; and cy, ex; and ¢; are the elastic stiffness, piezoelectric and
dielectric constants, respectively. In the most general case of anisotropy, there are altogether 45
independent constants. The present study is concerned, in particular, with the transversely isotropic
piezoelectric materials as they represent what is possibly the most technologically important piezoelectric
material. Thus, only 10 independent material constants are present. Removing the inertia terms in the
dynamic equations in eqn (1), we get the corresponding equilibrium equations.

Ding et al. (1996a) gave the general solution in terms of four displacement functions for the dynamic
equations for transversely isotropic piezoelectric media. For the equilibrium equations and in the case of
characteristic roots s; # sy # s3 # s1, the solution takes the following form in cylindrical coordinates

3 3
oy, 10 oy
U = § W: - —ﬂ w= E Siklii

—~ 9r r 30’ P dz;
3 3
1oy, 3y, oy,
= — ! —_— O = ,‘k [7’ 2
o Zr80+8r’ ;Szaz,- 2)

i=1

where z;=s;z (i =0, 1, 2, 3) and so=+/ce6/c44, 5; (i = 1, 2, 3) are the three characteristic roots of a sixth-
degree equation defined in Ding et al. (1996) and satisfy Re (s;) > 0, ky; and k»; are constants dependent
on materials constants and characteristic roots and the displacement functions ; satisfy the following
equation

2 9 32 32
<8r2 + ror + r200° * 8zlg>% =0, (=0123) ®)
Using the constitutive relation and eqn (2), the general solution of stresses and electric displacements
expressed by four displacement functions are obtained. At this point, the coefficients in front of the
derivatives of the displacement functions with respect to coordinates are all products or linear
combinations of material constants and characteristic roots. If expressions of the stresses and electric
displacements are substituted into the equilibrium and Gauss equations in the absence of F; and pj,
some relations among these coefficients will be determined with consideration of eqn (3). With these
relations being taken into account, the general solutions of stress components and electric displacements
can be written as follows:

3 2 3 2
Y Y (9
o, = 2%62 32 + Zl m; 52 2666—31’ <—I‘39 4)
= 1

i=

or
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:—2666Z< 2802>$,+Zn1 2 (25{3)

3 2 3 2
9 9 3%y, 31/10)
" 666;(r8r+r2392>%+;m’ ERFT (186

3 2 2
_ Z 0%y, 2
for = S’“’araz- Socas 1900z

i=1 !

T0 = 26662 (

where
a; = s ek + exska) — ¢33, = —ass?
ci=eis(1+ ki) —enkay, mi=ni+2c (i=1,2,3) Q)

In regard to axisymmetric problems, let y, and ; (i = 1, 2, 3) in eqns (3)—(5) be independent of 0.

In the later sections, various equilibrium problems are studied by use of harmonic polynomials and
harmonic functions presented in Appendix A. In Sections 3—7, axisymmetric deformation problems are
studied, hence, V) is taken to be zero. Let the z-axis be the symmetric axis and origin O be in the
middle plane of the plate and cylinder.

Because displacement functions i; satisfy weighted harmonic eqn (3), all harmonic functions in
Appendix A can be chosen as displacement functions simply by replacing z with z; just as illustrated in
the following sections. There are so many symbols in this paper that a Nomenclature is introduced in
Appendix D for convenient reference.
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3. Rigid body displacements and identical electric potential

Using ¢, (r, z) in eqn (A2) in Appendix A, we constitute the displacement function
W = Aue (s zi) = Az (6)

where Ay; (i =1, 2, 3) are unknown constants to be determined.
Substituting eqn (6) into eqns (2) and (4) gives

3 3
u =0, w= Z sikii Ay, ©= Z ik A1 (7

i=1 i=1
0,=00=0.=17,=0, D,=D.=0 ®)

The above equations contain two physically sensible solutions. One is that a piezoelectric body of
revolution may have rigid body displacement wy, that is,

u =0, w=wy, =0, o, =09g=0.=1,.=0, D, =D, =0 9)
The other is that a piezoelectric body of revolution may have identical potential @y, i.e.

u=w=0, =0, o0, =0p=0,=71.=0, D, =D.=0 (10)

4. Uniform axial tension, radial compression and axial electrical displacement

Using ¢,(r, z) in eqn (A2) and y,(r, z) in eqn (AS5) in Appendix A, we constitute the displacement
function
, 1 r
W = A2y (7, 2i) + Boyo(r, zi) = A\ z7 — 5 + By lnr— (11)
1
where Ay (i =1, 2, 3) and Bj are unknown constants to be determined.
Substituting eqn (11) into eqns (2) and (4) results in

3 3 3
|

up=—) Ayr+By—, w=2 E sikiidzizi, © =2 sikaiAzizi (12)

- r -

i=1 i=1 i=1

3 3
1 1
o, = 22 ejAy — 20663072, op = 22 ejA + 26’663072

i—1 s

3 3
0; = 22 aiA2i7 Trz = 0, Dr = 0, Dz = 22 CiAZi (13)
i=1 i=1

where

e =m; — Ce6 (14)
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Eqns (12) and (13) contain three physically sensible solutions, that is, solutions for an annular plate or a
hollow cylinder subjected to uniform axial tension and radial compression and uniform axial electric
displacement. The boundary conditions are

0y = {k
h G;:=p
r=r: 11.=0 (k=0,1), z=+= 7, =0 (15)
= D.=d

D, =0
Substituting eqn (13) into eqn (15) leads to
3 3 3 3
2r3 Z eidy — 2ce6Bo + 13qo, 217 Z eidy — 2ce6By = 11q1, 22 aiAr = p, 22 cidr=d, (16)
i=1 —

i=1 i=1 i=1

4.1. Uniform radial compression

When p = 0 and d» = 0, eqn (16) gives the following solution

D D D
Ay = 711, Ay = 5712, Ay ==, By=1 (17)
1 1

where

0 = ei(axcs — azer) + ex(azey — ayez) + es(ayjcx — axey)

Dy = h(ayes — a3¢z), Dip = b(azer —ajc3), Di3 = h(ajcr — axey)

_ i@ — o)

rqu - 7240
, b= 14 odY (18)

) =
1 2(rf = r5)

The solutions for an annular plate or a hollow cylinder under uniform radial compression can be
obtained by substituting eqn (17) into eqns (12) and (13), in which stress components and electric
displacements are

g —rdq0 | (90— qyrgri 1

r= T2 2 2 _ 2 2
’1 VO ’l }’0 r

%0 2 2 22

> > 2.2

_ Mg —rggo (9o —quyrpri 1
= 2
rl—ro 1

=T

6.=7.=0, D,=D,=0 (19)

Putting ry = 0 in eqns (18) and (19) gives the solutions for circular plate and cylinder.
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4.2. Uniform axial tension

When ¢; = ¢; =0 and d, = 0, from eqn (16) we have

D D D
Ay =22, Ay =="2, Apn==2, By= (20)
02 0>

where

0y = aj(excs —e3cr) + ax(escp —ejc3) +as(ejcy — excy)

p(excs —e3c)
b

_pescr —ejc3) _ p(eica —excy)
2 - ’ -

Dy = D ————, D —_— 21
21 2 3 23 5 21)
Substituting eqn (20) into eqns (12) and (13) gives the solution for a circular plate or a cylinder under
uniform axial tension and compression, in which stress components and electric displacements are

6.:=p, 6,=09=71,=0
D,=D.=0 (22)

4.3. Uniform axial electric displacement
When ¢y = ¢; =0 and p = 0, solving eqn (16) leads to

D5, D3, Ds3

21 53’ 22 53» 23 537 0 ( )

o = ci(azes — azey) + ca(aze; — ajes) + c3(ajex — azen)

_dh(mer — arey)

dh(ares — azer) D dy(aze; — aje3)
=, n=————m"
2

D
11 5 5

, D3 (24)

The solutions for a circular plate or a cylinder under uniform axial electric displacement can be obtained
by substituting eqn (23) into eqns (12) and (13), in which stresses and electric displacements are

0, =09=0:=7T,=0

D,=0, D.=d (25)

Eqns (19), (22) and (25) show solutions of stresses and electric displacement are independent of material
constants (elastic constants, piezoelectric constants and dielectric constants). Furthermore, eqns (22) and
(25) even show that the solutions are independent of geometric dimensions and shape.
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5. Pure bending and uniform radial electric displacement

Using ¢4(r, z) in eqn (A2) and y,(r, z) in eqn (AS) in Appendix A, we constitute the displacement
function

3r2z;

;
Vi = Azips(r, zi) + Biy(r, zi) = A3i<2? - ) + Biizi 1“; (26)

where As; and By; (i = 1, 2, 3) are unknown constants to be determined.
Substituting eqn (26) into eqns (2) and (4) gives

3 3
Zj
u =—3 E Azirzi + E Bii—
i1 i1 r

3

3
l r
w=3 E 6‘,’](15143,‘(212 — 2r2> + E SikliBli 1an
— 1

i=1 i=1

3

3
1
O=3 E S,‘kziAy(Z% — 5}"2) + E SikZiBli lnri (27)
P 1

i=1 i=1

3 3
Z
o, = 62 ejAzizi — 2ce6 E Bi—
. : r
i=1 i=1
3 3
Z;
gp =06 E ejAsizi + 2ces E Bii—
: : r
i=1 i=1
3 3 3 1
c.=06 E aidzizi, T =3 E sia;Azir + E SiaiBli;
i=1 i=1 i=1

3 3 3
1
D, =-3 E siciAzir + E SiCiBli;7 D.=6 E ciAsizi (28)
p p i1

The above equations contain two physically sensible solutions, that is, the solution for an annular plate
or a hollow cylinder under pure bending or uniform radial electric displacement, as described below.

5.1. Pure bending

Boundary conditions are
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T, =0
h/2 h Tz = 0
r=rg J zo,dz=M; (k=0,1), z:ii: 0,=0
2 D.=0
D, =0

Substituting eqn (28) into eqn (29) gives

3
> siaids =0
i=1

3
Z S[a,'B],‘ =0
i=1

3
Z S[C,‘A3,‘ =0
i=1

3
> siciBi =0
i=1

3 3 ’
6rsM
2 X _ 2NMo
3rg E siejAzi — Ce6 E siB1; = e
1 i1

3 3 )
6r-M
2 , 1410
3r] E sieiAzi — Ce6 g siB1; = n
j i1

i=1

From eqns (34) and (35), we have

3
> sieiBsi = ki
Py

3
Z siBy; =k
p)

where

2(1’%M0 — I’%Ml)
B

_ 6}"87’%(M] — M())

k= ky =
! S )

1301

(29)

(30)

G31)

(32)

(33)

(34)

35)

(36)

(37)

(38)

The unknown constants A3; can be calculated from eqns (30), (32) and (36) and B); from eqns (31), (33)

and (37).
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_ sasski(aacs — ascr)

S3S1k1(613C1 —ac3) y S1S2k1(a1C2 —axcy)

A
» Az A > A

Az =
31 A

A = 515283 [61(026’3 —ascy) +ex(asc; —aicz) +ez(acr — 61261)]

_ sasska(ares — ascr)
b

S3S1k2(a36‘1 —ac3) S1S2k2(a16'2 — axcy)
By = B, = , Biz=

Ay Ay ’ A

Ay = s15083(axe3 — azey + aze; — ajez + ajcr — axcy)

(39)

Substituting eqn (39) into eqns (27) and (28) leads to the solution for an annular plate under pure

bending, in which stresses and electric displacements are

12z 5 s 3 (M) — M) |

Or = e | PIMy — P2 My — T
3 (1% — r%) AR r? J

12z [, 5 13 (M) — M) |

0y = | P M| — raMy + L
(A (r% — r(%) T oo 2 J

O-Z:TI’ZZO; Dr=Dz=0

5.2. Uniform radial electric displacement

The boundary conditions are

o, =0 o: =0
h 7, =0
r=rgy1.=0 (k=0,1), z= i§ (rody — ridy)h
D:=t—5—5—
D, =d, =T

Substituting eqn (28) into eqn (41) leads to

3

E siaiAzi =0
i1

3

E siaiB1; =0
i1

3
E Sj@jA}l‘ =0
i=1

(40)

(41)

(42)

(43)

(44)
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3
Z siB1; =10 -
=1
3 3
-3r3 Z siciAz + Z siciB1i = rodo 0
i=1 =1
3 3
—3r%2 sicidsi + Z siciB1; = rid, 7
i=1 =1

From eqns (46) and (47), we have

3
Z sicidsi = k3 (48)
p
3
Z Sl'Cl'Blf = k4 (49)
p
where
_ rody — ridy ror(rido — rody)

“=5aoa T e G0

The unknown constants A43; can be obtained from eqns (42), (44) and (48) and By; from eqns (43),
(45) and (49).
S2S3k3(a2€3 — azer)

Az = , A

_ sas1ka(aer — arer) e — s1$2k3(arey — azer)
A B B

A ’ : A

S2S3k4(a2 —az) S3s1k4(a3 —ap) S1S2k4(a1 — @)
- A > BIZ = T x> Bl? =

By =
H Ay Ay : Ay

(1)

Substituting eqn (51) into eqns (27) and (28) leads to the solution for an annular plate or a hollow
cylinder under uniform radial electric displacement, in which stresses and electric displacements are

o,=09g=0.=7,.=0

ridy —rody . rori(rido — rody) 1
— r 4+ _

D,
?—r3 r—r3 r
2(rody — r1d
D. = (o 02 2V1 1)2 (52)

"—0

The solution for a circular plate or a cylinder can be obtained just by letting rp =0 in the above
solution. Similarly, from eqns (40) and (52) it can be seen that stresses and electric displacements are
independent of material constants.
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6. Annular plate simply-supported on outer and inner surfaces under uniform axial loads

Using ¢s(r, z) and ¢s(r, z) in eqn (A2) and y,(r, z) and y;(r, z) in eqn (AS) in Appendix A, we
constitute the displacement function

W = F3i05(r, zi) + Fs5ips(r, zi) + Gy (7, i) + G3iys(7s 2i)

3z 15
= F3,-<z? — %) + F5,-<zf — 5”22? + §r4zi>

3, 32z,
Gz —|—G;,|:<Z -3 z,) 1nil ’22’} (53)

where F3;, Fs;, Gy; and G3; (i = 1, 2, 3) are unknown constants to be determined.
Substituting eqn (53) into eqns (2) and (4) leads to

= —32 Fsizir — SZ F5,<2rz + 71 Z,) Z Gl,Zf
3 3
+; G},’( 3zrln —|— —|— Erz,)

3
1 3
w = 32 S,’k],‘F3,'<Z% — EV > + 52 sik1iFs; <Z — 3}’ 8]'4)

i=1 i=1

3 3
r 1 ; 1
+3; sik1,G1; lnz + ; SikliGsi[(z? _ 5rz) lnr_ n 5r2:|

1

3
- 1 3
O=3 g sik2[F3[(zf — Er ) +5 E SikoiFs; (z -3 z + gr4>

i=1

3 3
r 1 ro1
+Z sik2i G lnz + 3; S,‘k2,‘G3i|:(Z? — §r2> 11‘1; + 51‘2:| (54)

i=1

3 3
Oy = 62 6‘,‘F31'Zl' + SZ F5l'(4€,'Z? — 3f,'}’2Zl')

i=1 i=1

3 Z 3 r 2213
—2¢66 E Gliﬁ + E Gs;| 6e;z; lna — Ce6 VT + 3z;
i=1 i=1
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3 3
oy = 62 ez + 52 F5,~(4€[Z? — 3g,-r22,«)
i=1 i=1

3 Z; 3 r 223
+2C66Z Glirj + Z G3;| beiz; 111; ~+ ce6
=1 =1

i
— + 3z
r? '
I I

3 3
o, = 62 a;Fsiz; + IOZ a,F5[(2zf — 3}‘22,') +6
i=1 i=1

i=

3
r
E Cl,‘Gg,'Z,' In—
—1 ry

3 3
1
Ty = —32 sia; Fir — ISZ sia;Fs; <2rz? — §r3>

i=1 i=1

> 1 > roozzor
—i—; siaiGli; — 3; siaiGai\ r lnﬂ - 73

r

D,

3 3
1
-3 iciF3r — 15 iciFsi\ 2 2__3)
i:Elsc 37 ._E sic 5<rzl 5"

i=1

r

3 3 2
1 roooz;oor
+ i:EI CiSiGli; -3 i:E] C,'S,'G3,'(V 11’1; - )

1

3 3
D. = 62 cilsiz + IOZ C,’G5,‘(2Z? - 3]‘22,') +6
i=1 i=1

3
r
C,‘G3,’Z,’ In—
i=1 "

where

fi =2e; — ces, &i = 2e; + Ce6

The boundary conditions of an annular plate, which is simply-supported on the inner and outer
surfaces and is under uniform axial loads, are

h/2
J zo,dz=0
—h/2

b =%
r=Tg: WJ:;OZO (k:()a])v Z=i§ T, =0
/ —
J D,dz=0 D: =0
—h/2

From z = +(h/2): 7,. = 0, we arrive at

1305



1306 H.-J. Ding et al. | International Journal of Solids and Structures 37 (2000) 1293-1326

3
Z S[a,'G3,‘ =0 (58)
i=1

3 3

2Y " siaiFy+ 5k siaiFs =0 (59)

i=1 i=1

3
Z S,'al'Fﬁ =0 (60)
i=1

: 32
ZS[CZ,‘G],‘—F TZS?LI,'G}[ =0 (61)
i=1 i=1

Similarly, from z = +(h/2): D, = 0, then

3
Z s5i¢iG3;i =0 (62)
i=1
32 sicil3 + 7 Z S?CiF5,' =0 (63)
i=1 i=1
3
Z siciFsi =0 (64)
i=1

From z = +(h/2): 02 = +(p/2), we have
3 3 3
S5h
3h izgl s;aiFs3; + —2 i:EI S?aiFSI = pEI (65)

From eqns (59) and (65), the following equations can be obtained

3
; siails; = Z—;l (66)
: P1
3 _
; s;aiFs; = TS (67)

Fs; can be worked out from eqns (60), (64) and (67).
From r = ry: fgjz D,dz=0 (k=0, 1), we have
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3 2.3 3
Sroh 15
—3ry E siciF3; — g E S?C,’FS[ 2 E 8;CiFs; + E siciGhi
i=1 i=1

(68)
3
—1 —Zschl—i——Z 576G + 702 s5iciG3 =0
3 2 3 3 3 3
5rih 5 1517 1
- iciFs — JCilsi — —— iciF'si + — iciGi
3r1;sc 3 > ;slc 5 > ;sc 5+r1;SCG1
(69)
l
12 Zs ch,—i——Zsch,_O
By use of eqns (62)—(64), eqns (68) and (69) can be simplified to
3 hz 3 3
; Sl'Clei + Z ; S CiG3i =0 (70)
From r = ry: jﬁfp zo,,dz=0 (k=0, 1), we get
3 3
ré |:6Z sieiF3; + 32 s,-(hzs?ei - SVéf,-)F5,-j|
i=1 i=1
(71)

3 3 2
h
— 2¢46 E $;G1;i +3 E S,'|:26ir3 In— C66(10 S; +r5)]G3i:0
i=1 i=1

r |:6Z sieiF3; + 32 S hzsze, — SIJ,)FS,] — 26662 siG1; — 36662 S’(lO 57+ r1>G3,- =0 (72)

Superposing the rigid body solution eqn (9) on the equations above and from r=r;, z = 0: w = 0 (k
= 0, 1), we have

15 3 .3 3
ro |:2W() — 3102 S,k11F3, }"32 SikliFSi +2 ln;—(l) Z S,‘kll'Gl,' — 37‘% (11’1:;—0 — 1) Z Sik1[G3i
i=1 i=1

i=1 1 i=1

=0 (73)

2W()—3VIZSJ€1,F3, ’lZSlkllF5l+3’IZSkllG3’ =0 (74)

i=1 i=1

where wy is a constant to be determined.

Finally, wy, F3;, Gi; and G3; can be determined from eqns (58), (61)—(63), (66) and (70)—(74) (ten
equations altogether). Substituting F3;, Gy;, G3; and previously obtained Fs; back into eqns (54) and (55)
yields the solution for an annular plate that is simply-supported on the outer and inner surfaces and
uniformly loaded on the upper and lower surfaces with +(p;/2), respectively.
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Table 1

Elastic constants Piezoelectric constants Dielectric constants

(10" Nm™2) (Cm™?) ao~cvim!

€11 C12 €13 €33 Ca4 €3] €33 €1s &1 €33

12.6 7.78 7.43 11.5 2.56 -5.2 15.1 12.7 64.9 56.2

Table 2

Type of material Thickness of circular Deflection at Moment at
plate (m) center (m) center (Nm)

PZT-4 0.01 6.2469 x 10~%p, 0.2220p,
0.1 6.2966 x 10™°p, 0.2220p,

Transversely isotropic material 0.01 9.3627 x 10~p, 0.2114p,
0.1 9.4493 x 10~p, 0.2114p,

Superposing this solution on the solution of an annular plate under axial uniform tension as discussed
in Section 4 and letting p = (p;/2) result in the solution for an annular plate that is simply-supported on
the inner and outer surfaces and is loaded with uniform load p; on the upper surface. Let
ro =0, Gi; = G3; = 0, then wy and F3; can be derived from eqns (63), (66), (72) and (74). Thus, with w,
F3; and Fs; being known, the solution for a circular plate is obtained.

Assume that the thickness of a PZT-4 solid piezoelectric ceramic circular plate # = 0.01 or 0.1 m,
radius r; = 1 m. The material constants of PZT-4 are shown in Table 1. Based on the equations above,
the deflection and moment at the center of the circular plate can be calculated. Assume that a
transversely isotropic circular plate has the same elastic constants as those of PZT-4 and the same
geometric dimensions and boundary conditions. The results of the calculations are listed in Table 2 for
comparison. It is obvious that the deflections at the center caused by uniform load p; on the upper
surface are different, whereas the moments exhibit no noticeable difference.

7. Piezoelectric rotating circular shaft and rotating disk
7.1. Particular solution for the case of potential body force

In cylindrical coordinates, the fundamental equations of axisymmetric deformation can be expressed
as three second-order partial differential equations in three unknown variables, i.e., displacements u,, w
and electric potential ®. When the body force is potential, namely,

v v

Fo=-", F=-2 7
ar 0z (75)

then it can be assumed that

_aU

ow
W =Y B o Q
ar

= — = — 76
v az’ 9z (76)

Substituting eqns (75) and (76) into the three second-order partial differential equations, the following
equations can readily be derived
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U 1%
plwl={vr (77)
Q 0

where U, W and Q are functions to be determined, V is the potential of body force and D is a
differential operator as described below,

9 92 9?
C11/\+C44@ (c13 +C44)@ (e31 +e15)@
2 82
D=1 (c5+ecu)A culh+ens5 esA+enc— (78)
dz a9z
9> 92
_(931 +e15)A €15/\+€33@ —(811/\+333822)_

and where A=(3°/8r*)+(1/r)(d/dr). The centrifugal force for uniform rotation is
1
F.=pro’, F.=0and V= —Eprzw2 (79)

At this point, V' in the second row of eqn (77) equals zero. Introduce a function F such that |D|F =V,
where |D| is the determinant of D. After some manipulations, we arrive at

(“8_6 son e dA3>F — Lorw? (80)
9z0 94 922 = 2f

where a, b, ¢ and d are constants dependent on material constants (Ding et al., 1996a). It is easy to find
a particular solution of F.

2
pw 8
F=_P2 81
82624224 (1)

Obviously the particular solution of eqn (77) is

U AnF
w =1 A,F (82)
Q A13F

where A, A;p and A3 are algebraic complements of the first row in D. From eqns (76), (81) and (82),
the particular solution of displacements and electric potential can be found to be

2

U, = —&;*3, w=0, ®&®=0 (83)
8¢

Substituting eqn (83) into the constitutive relation yields the particular solution of stresses and electric
displacements.

o, =mr*, og=hr’, o.=hy?, 1.=0, D, =0, D.=hy?’ (84)

where
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—(3¢ . 2 —(3¢ § 2 . 2 _ 2
Iy = (Berr + cip)pw = (3cia + c11)pw Dby = C13pw = €31 pw (85)
8C11 8011 2C11 26‘11
7.2. Solutions for a piezoelectric rotating disk
The boundary conditions of an annular piezoelectric rotating disk are
/2
J o,dz=0
—h)2 P 0; =
r=rig 1,.=0 (k=0,1), z= iz: 7, =0 (86)
/2 _
J D, dz=0 D: =ds
—h/2

Using ¢,(r, z) and ¢u(r, z) in eqn (A2) and y,(r, z) in eqn (A5) in Appendix A, we constitute the
displacement function

l//i = in(p2(ra Zi) + F4i(/74("a Zi) + GOVO(V’ Zi)

) 7 4 2o 3 ¥
=F; Zi_j + Fu zi—3rzi+? —|—G01nr—, (i=1,2,3) (87)
1
where Fy;, Fy; (i = 1,2, 3) and Gy are unknown constants to be determined.

Substituting eqn (87) into eqns (2) and (4) leads to a solution. Superposing that solution with the
particular solution represented by eqns (83) and (84) results in

3 3 2
1 1 0}
U = — El F2i7'+3 El F4i( — 27’2? + 51’3> +G0; - gCTr:;

3
w=2

3
sik1iF2iz;i + ZZ S,'k],'F4,‘(ZZ? - 3?’22,‘)
i=1 i=1

3
d=2

3
SikoiFizi + 22 S,‘kg,‘F4,‘(2Z? — 3}’22[) (88)
i=1 i=1

3 3
. 1
o, = 221: elFh + 321: F4,’( —f,-l‘z + 46,’2?) — 2066G0r—2 + h]l‘z

3 3
1
oy = 22 eif +3 Z F4,<( —gir* + 4e,~zf) — 2c66G072 + hor?
i=1 i=1
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3 3 3
o, = 22 aiFy + 62 aiFyi(2z; = r*) + hsr?, 1. = —122 siaiFyirz;

i=1 =1 i=1

3 3 3
D, = —122 SiciFyirz;, D. = ZZ ciFhi + 62 C,’F4,'(ZZ% — r2) + h4r2

i=1 i=1 i=1
Substituting eqn (89) into eqn (86), we have

3 3
25 " eiFai— 1y Y Fu(3firg — ste;) + 2¢66Go + hrg = 0
i=1 i=1

I I

3

3 ;
2r% Z el — r% Z F4,-(3ﬁr% — hzsfe,-) + 2¢66Go + hlr‘lt =0
=1 i=1

3
Z s?aiFM =0
i=1
3 3
22 aiFa; + 3h* Z sfa,—F4,- =0
i=1 i=1

6

3
aiF4,- — /’13 =0

i=1

3
2

3
Cl'le' + 3}122 S?C,’F4,‘ = d3

i=1 i=1

3
62 ciFyi —hy =0
i=1

1

1311

(89)

(90)

Solve eqn (90) successively, then Fy;, F»; and Gy will be obtained in turn. Substituting Fy;, F>; and Gy
back into eqns (88) and (89) yields the solution of an annular piezoelectric rotating disk. Set ro = 0 and
Gy =0, in eqn (90), then Fy and Fy; can be calculated from eqn (90), that is, the solution for a solid

piezoelectric rotating disk is obtained.
7.3. Solution for piezoelectric rotating circular shafts

The boundary conditions of a hollow piezoelectric rotating shaft are:
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|
ZHJ o.rdr=0
h 20 O',, = 0
Z:ii: 7. =0 r=r:{t.=0 (k=0,1) 91)
ri D, =0
27[J D.rdr=n(r} —r})dy
ro

Set Fy; = 0 in eqns (88) and (89) and substitute eqn (89) into the boundary conditions eqn (91), then we
have

4

3
aiFh + hs (V% + ré) =0

i=1

4

3
ciFhi + hy (V% + 1”(2)) = 2d,

i=1

3
2}’%2 el — 2¢66Go + hlrg =0

i=1

3
27 " eiFyi — 2e66Go + i =0 (92)

i=1

Solve eqn (92) simultaneously, then we get F»; and Gy. Substituting F»; and Gy back into eqns (88) and
(89) and letting F4; = 0 give the solution for a hollow piezoelectric rotating shaft. Let 1y = 0 and Gy =0
in eqns (88) and (89), then F,; can be calculated, that is, the solution for a piezoelectric rotating circular
shaft is obtained. In the following sections we proceed to the equilibrium of a cone or a hollow cone,
which is traction-free except at the apex. In Appendix B, the set-up of a coordinate system is described
and the boundary conditions as well as the equilibrium equations of relevant forces are also listed.

8. Torsion problem of a cone loaded with concentrated force couple M, at the apex

This is a free torsion problem of a cone, we take

Y; =0, (i=1,2,3) and lp():% 93)
0

where A4, are unknown constants to be determined and
12
Ro=(r*+52)" (94)

Substituting eqn (93) into eqns (2) and (4) leads to
p

I (95)

u=w=0=0, wu=-—A4
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> b 2
r 3s5rz 3551z
0 0
T0 = CesR—ng, Tp: = C44R—8A0’ Dy = 615R—ng
o,=00=0.=7,=D,=D,=0 (96)

Substituting eqn (96) into eqn (Bla) indicates that eqn (Bla) has been satisfied. Constant 4, can be
determined by the global equilibrium condition eqn (B4c), i.e.,

btano,
M. + J J rtor drdf =0 ©7)
0 JO

Substituting 7,9 in eqn (96) into eqn (97) gives

3 tan?a + 252 2
Ay =M. 2TCe 73(/)2 - = (98)
(tanzac + s(z)) S0

When the cone reduces to a half-space, i.c., « = ©/2, then 4g = —M.sy/(47mces).

9. Solution for a cone subjected to concentrated force P, and point charge Q

This is an axisymmetric deformation problem, we take
Yo=0. Y= A In(Ri+z) (=123 (99)
where A; (i =1, 2, 3) are unknown constants to be determined and
R=(P+s2)" (i=1.2023) (100)
Substituting eqn (99) into eqns (2) and (4) gives

3 3

r A;
U = Z Aim, w = Z Sikliﬁ

i=1 i=1 i
A:l 1 lR,"
20662AR(R+Z, ZHA
2 P A=
e ‘“Z R(R +2) Z’”

3
z;
:—E aA 3 ‘Crz=—E SiaiA1R3
i=1
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3 3

r Z;
D, = —Z SiCiAiFa D. = —Z CiAiR_;
i1 i i

i=1

T = To- = Dp =0 (102)

The second equation of the boundary conditions on the cone surface, eqn (Bla), has been satisfied
and the third and fourth equations can be deduced from the global equilibrium. Thus, only the first
equation of the boundary condition eqn (Bla) and the following global equilibrium conditions need to
be satisfied.

2n b tan o 2n b tan o
P.+ J J o.rdrdd =0, Q= J J D.rdrdf (103)
0 JO 0 Jo

Substituting the relevant expressions in eqn (102) into eqn (103) and the first expression of eqn (Bla)
gives

3 <H~ fan —— 1)a,-A,~ —_P./2n)

i=1

Z (H- Zm a 1>C'Ai =0/Cn)

i=1

S;a; tan o 2ce6 n;S;
3 _ e _ 4;,=0 104
. ( H? H;N; tan och ) (104)

i=1

where

Hi=\/1+s/tan2 o, N;,=(H;+s;/tanc), (i=0,1,2,3) (105)

A; can be obtained by solving eqn (104). When the cone reduces to a half-space, i.e., « = n/2, we have

A1 = [Po(52a203 — 53a3¢2) + Q(5202a3 — S30302) | /A
Ay = [P_,(S3a361 —sia1c3) + Q(S3a3a1 — s1a1a3)]/A

Ay = [Pz(slalcg —s2axcr) + Q(s1ara; — Szazal)]/A (106)
where

ay a as
A=27n|¢ 153 1) (107)

s1dy S2dap S3d3
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10. Bending problem of a cone loaded with concentrated force P, at its apex

Take

Agr sin 0 A;r cos 0

- (=123 108
Rgm V= R G ) (108)

Vo=

where Ay and A;(i = 1, 2, 3) are unknown constants to be determined.
Substituting eqn (108) into eqns (2) and (4) gives

3 P
1 A 0
ul‘ZE:Ai _ r ; cos () — 008 Y
p Ri+zi  R(Ri+z) Ro+zo

sin 0 1 r
Un = — Ai + — A sin 0
0 Z: Ri+z (Ro +20  Ro(Ry +20)° ) ’

3 3
A;r cos 0 A;r cos 0
b sk D= Joy—t 7 109
w ;gl hRi(Ri'}‘Zi), ;Sz 21R(R +Zl) ( )
rcos 0 3 rcos 0 rcos@
o, =2c6——— Ao + 2cs6 A—— nAdi——s—
Ro(Ro + 20)* ; Ri(R; + z;)? ;
rcos 0 rcos 0 3 rcos 0
gy = —26‘66— 0o— 2C66 A m; iAi———
Ro(Ry + z0)* ; "Ri(R; + z:)? Z "R
3 3
rcos 0 rcos 0
o, = Zl a;A; e D, = Zl ciA; Y
= 1 i= 1
. Z 2r sin 0 2r sin 0 . r? sin 6 n 213 sin 0
Tr) = C66 66| —
' = "'R(Ri+ =) Ro(Ro+20)"  R}Y(Ro+20)"  R}(Ro+20)°

T Zsa cos 0 + spc %
== i R(R +2) R3 O™ Ro(Ry +29) "

sin 0 1 Z0
A + Agl =————— — == |sin 0
To: = ZY'Q’R(R o) i+ S0C44 0<R0(R0+20) RS)SIH

3
1 z cos 0
D, = SiciAdi| —————— — = Jcos 0 + sgpeis——— Ay
; (Ri(Ri +z) R} ) Ro(Ro + z0)
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sin 0 1 Zo
A; Ayl ——— 0 110
Zs,clR(R oyt soers 0<R0(R0+Zo) R3>sm (110)

Under the condition of traction-free cone surface, it can be proved without much difficulty that either
the first or the second expression of the boundary condition eqn (Bla), is needed, if the following
equation is required to hold in eqn (B2a)

2n pbtana
Px—i—J J (1,2 co8 0 — 1y, sin O)r drdfd = 0 (111)
0o Jo

Substituting relevant expressions of eqn (110) into eqn (111) and expressions 1, 3 and 4 of eqn (Bla)
leads to

3
1 S0 Px
A; — 1 - Ay = —
ZS ( Htanoc) ! C44SO< Hotanoc) 0 T

i=1

23: 20662 3 Csa tan o si3 yn 2¢66 €448 tan o Ay =0
~ | HiN;  H; H N; H HON HyNy

3 2
Sid; S7d; a; tan o C4450
e A; + Ay =0
; <HN tanoaH?  H3 ) HoN,°

3 2
SiCi §7Ci ¢; tan o €1550
- — A; Ay=0 112
Z <H,-N,- tanoH?  H3 ) T H N, (112)
Hence, A; can be obtained by solving eqn (112). When the cone reduces to a half-space, i.e., o = n/2, we

have

Ao = —Py/2nsocas, A1 = [Pu(a2c3 — aze)]/A

Ay = [Px(a3c1 — a1C3)]/A, A; = [Px(alcz — azcl)]/A (113)

where A is the same as eqn (107).

11. Bending problem of a cone subjected to concentrated force couple M, at its apex

Take

Agr sin 0 A;r cos 0

Vo= ReRo 20 V1T RiRi+7)

(i=1,2,3) (114)

where Ay and A4; (i = 1, 2, 3) are unknown constants to be determined.
Substituting eqn (114) into eqns (2) and (4) gives:
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ZA B 1 c0s 0 — Ay cos 0
0 R3 Ri(R; +z;) Ro(Ro + z0)

3 .
- A;sin 0 1
= § T 4y 0 - -
" ~ Ri(Ri +zi) Ao (R3 Ro(Ro + Zo)>

3 3
7 cos 0 rcos 0
W= - E Siklz‘AiT, ¢ = E SszzTAi

i=1 i i=1 i

2 cos 0 3 3z;r cos 0
=2 - 4; il
‘662 <R3 R(R; + Zi)) r + Z n RIS

i=1

42 Ao cos 0 2 20
c _ 20
667 Ro(Ro + zo) Rg

3 3
Z 2 cos 0 3z;r cos 0
70 = 20662 <R3 ~ R(Ri+ Zi)) r At Z MRS A
= 1

i i=1

e Ao cos 0 2 _Zo
oy Ro(Ry +z0) R}

3
3z;r cos 0
o= Y a0y,

i=1 i

3 .
i\ Sin 0
T’FZC“Z(R(R ¥z Rf)TA"

i=1

Ay sin 0 2 Z0 3zor sin 6
+2¢ — — | —ceg———A4
oy (RO(RO +20) R3> Ry
cos 0
Ty = Z A; sla, cos 0 — Z A;s; al l —I— AoSoCas R(3)

312 1
Tp: = Z A; s,a, + AoSoCasq SIN 0(1; — R3>
0

1 0

1317

(115)
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3 2
3r cos 0 cos 0
; iSi c,Rl cos 6 — Z Aisici——— R + soeqdg——— Ro

3r 1 3z;r cos 0
ZA 9c, O 4 dosoers sm6<R5 _RS>’ D. = ZciTAi (116)

If in the cone surface boundary condition eqn (Bla), X% =0 and D’ = 0 are required to hold and the
following eqn (117) is also required to hold, then from eqn (B4b), it can be inferred that either X% =0
or Xj =0 is needed.

21 pbtana
M, + J J [b(v:,.; cos 0 — 1¢. sin 0) — ro. cos H]V drdfd =0 (117)
0o Jo
From eqn (B2a), we have
21 pbtana
J J (1,5 cos 0 — 1y, sin O)r dr dd = 0 (118)
o Jo
Then, eqn (117) can be simplified to
2n pbtana
My—J J r*a. cos 0 dr d0 = 0 (119)
o Jo

From eqn (119) as well as X =0, X? =0 and D% = 0, the following system of equations in Ay, 4, 4>
and A3 is formed.

3 2
2 3s; M,
E a; 351 3 — 5 -2 Al'z—}
Py H?tan’ o H;tana i

i 2 Si + 3Sil’l,' tan o 3s,a,» Sid; A,
66 " tanoH 3 tan oH 3 H? H} '

i=1

2 ) tan o
2 _— | - — (49 =0
+|: C66<H0N0 tan otHS) Socas H(3) :| 0

3
SiCi SiCj 3Sl'C,' S0€15
Z(ﬁ_H_;?_F)A"JrH—gAOZO (120)

Consequently, 4; can be calculated from eqn (120).
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12. Hollow cone problem

With respect to M. torsion problem, A can be calculated just by rewriting eqn (97) into the following
form

2n pbtana
M, + J J rtor drdf =0 (97a)
0 Jbtanp
As for the problem of P, plus Q, take
Yo=0, ¥;=A4;ln(Ri+z)+Biln(R—z), (=123) (99a)
Then, from the global equilibrium of P, and Q
2n pbtano 2n pbtano
P, + J J o,rdrdd =0, Q= J J D.rdrdf (103a)
0 Jbtanp 0 Jbtanp

as well as X?=0, D?=0, X*=0, and Xf =0, A; and B; can be determined.
In regard to the P, bending problem, take

_ Aprsin®  Borsin 0 _ Ajircos®  Bjrcos0

- | = =1, 2 1
Yo Roy+zo  Ro—z0 "' Ri+z Ri—z’ (i=1,23) (108a)
From the global equilibrium condition of P,
2n pbtana
P+ J J (t,2c08 0 — 79, sin O)r dr d6 = 0 (1112)
0 Jbtanp

as well as X*=0, X/ =0, X4=0, X*=0, Xf =0, D* =0, and D =0, constants 4; and B; can be
determined.
Regarding the M, bending problem, take

Apr sin 0 Byrsin 0
Yo = +
Ro(Ro +20) ~ Ro(Ro — 20)
Ajcos 0 B;cos 0
v, = cos cos (1142)
Ri(Ri+z)) Ri(R—z)
From the global equilibrium condition of M,
2n pbtana
M, — J J . cos 0 drdf =0 (1192)
’ 0 Jbtanp

as well as X*=0, X/ =0, X%2=0,X*=0, X =0, D*=0 and D =0, constants 4; and B; can be
determined.

13. Conclusions

Due to material anisotropy and coupling between mechanical deformation and electric field, analytical
solutions for piezoelectric materials are much more difficult to obtain and the process of solution is
more complicated, compared with those in elasticity theory of isotropic materials. In general, stress
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components and displacements are dependent on material constants as shown in Table 2. However, in
some solutions, stresses and electric displacements are independent of material constants, as shown in
eqns (19), (25), (40) and (52). Furthermore, eqns (95), (96) and (98) show independence of piezoelectric
constants and dielectric constants, yet dependence on elastic constants. All these results indicate that
stress components in these solutions agree with those of the theory of elasticity for isotropic materials.
Eqn (4) gives the stress components and electric displacements in terms of displacement functions, which
automatically satisfy the equilibrium equations and Gauss equation provided that eqn (3) is satisfied. It
should be noted that eqn (4) is different from eqn (6) of Ding et al. (1997a) in this sense. Making use of
eqn (4) may bring convenience to the study of equilibrium problems. The analytical solutions obtained
in the paper are also useful for the study of other problems relating to more complicated loads and
boundary conditions by the superposition principle. Moreover, these solutions can serve as benchmarks
for numerical methods such as the finite element method, the boundary element method, etc. All
problems solved in the paper are listed in a table in Appendix C in order that they can be intuitively
understood and conveniently applied.
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Appendix A: several harmonic function series

1. Harmonic polynomials for axisymmetric problems can be written in the following form:

[n/2]

90,4(”, Z) =7" + Z( - 1)
m=1

mn(n - 1)5 LRRE) (l’l —2m + 1) n—2m_2m
z r

(A1)
2mp2(m — 1), .. 1

where [1/2] denotes the largest integer <(n/2). From eqn (A1), the first six harmonic polynomials can
be written as follows:

Qo) =1, @2y =z @y(r,2) =2 =37, @y(r2) =2 —3rz

Q4(r, 2) = =32+ %1’4, @s(r, 2) = 2 =522 4+ %51’42 (A2)

2. A harmonic function series containing In (r/r;) (r; is a nonzero constant).
Another harmonic function series corresponding to ¢, (r, z) that contains In (r/r;) is

r
Yu(Fs 2) = @u(r, 2) ln; + 0u(r, 2) (A3)
where
Q 7.z __Wf(_l)mn(n— 1),,(”—2m+1)<l+ 1 n +1)Z’12mr2m (A4)
n( ’ )_ m=1 szmz(m—l)z...l m m—1

By eqns (A3) and (A4), the first six harmonic functions are written as follows:

r r
Yo(r, 2) =In—, y(r, z)=zIn—
r r
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1 2
Yo(rs 2) = <22 — §r2> ln£ + %

3 3
i 9
Va(rs 2) = <Z4 — 372+ %1’4) In +3722 - =4
r

16

1 ’ 4
ys(r, 2) = <25 — 572 + —5;'42) I’ + 5722 — —5r4z (AS)
8 r 16

3. It is not difficult to directly verify that the following functions are all harmonic functions

1
31. — A6
s (A6)
where R = /1?2 + 22
32. In(R+z)and In(R—2z) (A7)

313 rsinH’ r cos 0’ rsinH’ rcos 0 (AS)
R+:z R+:z R—=z R—=z

rsin 0 rcos 0 rsin 0 rcos 0
4. A
3 R(R+z)" R(R+z) R(R-:z) R(R-2) (&9)

Appendix B: boundary conditions of a hollow cone

A hollow cone (the apex angle 2« > 2f) is considered. The origin of the coordinate system is taken to
be the apex of the cone, and the z-axis be the common axis of the cone, which points into the cone. The
xy-plane is parallel to the isotropic plane. Concentrated force P = P,i+ P,j + P:k, concentrated force
couple M = M,i+ M,j+ M.k and point charge Q are applied at the apex of the cone, where i, j, k are
three unit vectors of a Cartesian coordinate system. Besides, the cone is loaded with surface forces:
X, X, X, X0, )Eﬁ, )?’f and prescribed electric displacements D, and D_f .

In cylindrical coordinates, the boundary conditions on the surface are:

Xﬁ‘:o,cosoc—rrzsina:)}ﬂ X?j:‘c,‘gcosoc—rgzsinoc:)?g

ro

z/r = cot a: (Bla)

. gl 4 . ~%
Xj:r,lzcosoc—azsmoc:Xj, D% =D,cosa—D;sina=D,

. ; . _p
Xf:a,cos/?—v:,.;smﬁ:)(f, Xg:rrgcosﬂ—f(;zsmﬁ:)(é

z/r = cot f3: (B1b)

Xf:r,,cosﬂ—azsinﬂz)?f, fo:D,Acosﬁ—DZsinﬁzD_f

Cut off a section of the cone by z = b (constant) and the global equilibrium equations of this section are:
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btana 2 b
P+ J J (7,2 cos 0 — 14 sin 0)r dr dO + J J ()?,X cos 0 — X, sin 9)2 dz d6 tan a/cos a
0 0 Jo

btanf

En J”(X/ cos O — Xg sin 6)2 dz dO tan B/cos f =0

21 pbtano 2n b
P, + J J (1,2 sin 0 + 74, cos O)r dr d6 + J J (XfC sin 0 + XZ cos 0)2 dz do tan o/ cos o
btanf} 0 Jo

21 b
+J J (ff sin0~|—/\_’gcos G)Zdsztanﬂ/cosﬂzo

2n pbtano 2 (b 2n
P. +J J azrdrdH—i—J J ijdzd(?tanoc/cosoc—kj
0 Jo 0

b
J )?fz dzdf tan f/cos f =0
0

21

21 pbtano 2 b . b 5
Q:J J Dzrdrd0+J J D,z dz df tan oc/cosoc—i—J J D,z dz dO tan /cos f8
0

0 Jo 0

2n pbtana
M, — J J b(rgz co0s 0 + 7, sin 0) — ro. sin H]V dr do

btanfs

21 b
J J X700s9+Xasm0 X%sm0tanoc>z dz d6 tan o/cos o

27 pbtano
M, — J J b(‘L’@z sin 0 — 1,- cos 0) + ro. cos H]r dr do

2n b
J J X’Ksmﬁ Xﬁcose—i—XﬁcosHtanB)z dzdf tan f/cos f =0

btano, 2n b 2
M. + J J 7.1 dr d0 + J J X?;z2 dz d0 tan® o/cos o + J
0 Jbtanp 0 Jo 0

n b
J A_’gzz dz do tan® B/cos f =0
0

(B2a)

(B2b)

(B2¢)

(B3)

(B4a)

(B4b)

(B4c)

It is worth noting that in the first integral of eqns (B2a)—(B4a), z = b and in the last two integrals r = z
tan o and r = z tan f3, respectively. As for the solid cone problem, let f = 0 in the above equations (2« is

the apex angle of the cone) and eqn (B1b) does not need to be considered.
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Appendix C: list of problems solved in this paper

No. Problem Location Solution [lustration
1 | Rigid body displacement | Section 3 Eqn (9)
Identical clectric Section 3 Eqn (10)
potential
3 Uniform radial Section4.1 | Egns (12), (17) 4z
compression and (19)
4 Uniform axial tension Section4.2 | Eqns (12), (20)
and (22)
5 Uniform axial electric Section 4.3 | Eqgns (12), (23)
displacement and (25)
6 Pure bending Section 5.1 | Eqns (27), (39) "
and (40) " ‘) 4
7 Uniform radial electric | Section 5.2 | Eqns (27), (51) 2
displacements and (52) . W 3
>
8 Annular plates under Section 6 Eqns (9),(54),
uniform axial loads on (55), (58), (60)
double surface —(64), (66),(67) X
and (70)—(74) p 2
9 Annular plates under Section 6 Superposing the
uniform axial loads on solution of No.§
top surface with that of No.4
(where
r=pr12)
10 Rotating disks Section 7 Egns (88), (89),
and (90)
11 | Rotating circular shafis Section 7 Eqns (88), (89)
{where
F, =0)and
(92),

1323
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continued
No. Problem Location Solution Nlustration
12 Cone loaded with Section8 | Eqns (95), (96),
concentrated force and (98)
couple M,
13 Cone subjected to Section 9 Eqns (101), v
concentrated force P, (102), and (106) -
and point charge O z
14 Cone loaded with Section 10 Eqns (109),
concentrated force P, (110) and (112)
15 Cone loaded with Section 11 Eqns (115), v
concentrated force (116) and (120)
couple M, C My
16 Hollow cone Section 12

Note: A series of analytic solutions of the annular plate, circular plate, cylinder and hollow cylinder is
obtained in this paper. To save space, we only list the annular plates and hollow cylinders in the above
table. The solutions of the circular plate and the cylinder could be obtained by letting ro=0, By=B;;=0
and Go= G;=G3;=0 in the corresponding solutions of the annular plate and hollow cylinder.

Appendix D: nomenclature

ai(i=1,2,3)
Gi=1,23)
Cijkl

Cl1, €125 C13, €33, C44
do, d

d>

d

D;

b,. D,

Dra DH: Dz
ei(i=1,2,3)

constants defined in eqn (5)

constants defined in eqn (5)

elastic stiffness constants

independent elastic stiffness constants of the transversely piezoelectric media
uniform radial electric displacement loaded on the inner and outer surfaces of
the annular plate or the hollow cylinder and rotating shaft

uniform axial electrical displacement loaded on the annular plate or hollow
cylinder

uniform axial electric displacement loaded on the rotating disk

components of electric displacement

surface electric displacement loaded on the cone defined in eqn (Bla)
components of electric displacement in the cylinder coordinate

constants defined in eqn (14)



E;

€kij

€31, €15, €33
fi(i=1,2,3)
F;
gi(i=1,2,3)
h

Hi(i=0,1,2,3)
kin kot i =1, 2, 3)
mi(i=1,2,3)
My, M,, M,

My, M,

nj (l= 17 27 3)
Ni(i=0,1,2,3)
P

pPi

P, P, P,
q0, 41

0

r, 0,z

ro

r

Ry, Ri(i=1,2,3)
S0 =

si(i=1,2,3)
23

Up, g, W

%)

X, Y, Z

Zi(i=1,2,3)=
y,(mn=1,2,3...)
200

2B
&jj
&ij

€11, €33
0

Pr

X)X, XX Ky, X
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components of the electric field

piezoelectric constants

independent piezoelectric constants of the transversely piezoelectric media
constants defined in eqn (56)

body force

constants defined in eqn (56)

thickness (height) of the annular plate (or hollow cylinder, rotating disk and
rotating circular shaft)

functions defined in eqn (105)

constants defined in eqn (41) in Ding et al. (1996a)

constants defined in eqn (5)

moments along the positive directions of x-, y- and z-axes applied at the apex
of the cone

bending moment loaded on the inner and outer sides of the annular plate or
hollow cylinder

constants defined in eqn (5)

functions defined in eqn (105)

uniform axial tension loaded on the annular plate or hollow cylinder

uniform axial loads on the annular plate simply-supported on the outer and
inner surfaces

concentrated forces along the position directions of x-, y- and z-axes applied at
the apex of the cone

uniform radial compression loaded on the inner and outer surfaces of the
annular plate or hollow cylinder

point charge applied at the apex of the cone

coordinate axes in the cylinder coordinate orfz

inner radius of the annular plate (or hollow cylinder, rotating disk and rotating
circular shaft)

outer radius of the annular plate (or hollow cylinder, rotating disk and rotating
circular shaft)

harmonic functions defined in eqn (94) and (100), respectively

N

characteristic roots of a sixth-degree equation defined in eqn (32) in Ding et al.
(1996), which satisfy Re (s;) > 0

components of displacement

components of displacement in the cylinder coordinate

rigid body displacement

coordinate axes in the Cartesian coordinate Oxyz

surface forces loaded on the cone defined in eqn (Bla)

SiZ

harmonic polynomials defined in eqn (A3)

apex angle of the cone or outer apex angle of the hollow cone

inner apex angle of the hollow cone

dielectric constants

components of strain

independent dielectric constants of the transversely piezoelectric media

material density

density of free charges
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gjj components of stress

Oy, 09, Oz, Tgz, Tz, Trg components of stress in the cylinder coordinate

(0] electric potential

@, identical electric potential

@, (m=1,2,3..) harmonic polynomials defined in eqn (Al)

Vo, ¥, (i=1,2,3) displacement function

w angular velocity of the rotating disk or the rotating circular shaft
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